cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381492 a(n) is the logarithm to base A381491(n) of A381487(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 4, 3, 3, 4, 4, 13, 7, 5, 5, 7, 19, 6, 7, 10, 7, 7, 25, 8, 13, 9, 10, 9, 13, 31, 10, 16, 11, 11, 13, 37, 19, 12, 13, 13, 43, 22, 19, 14, 16, 15, 15, 49, 25, 16, 17, 19, 17, 55, 28, 19, 18, 25, 19, 61, 22, 31, 21, 20, 21, 67, 34, 23, 22, 25
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 7 since A381487(12) = 128 = 2^7 = A381491(12)^a(12).
		

Crossrefs

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[e=Log[A010888[k],k]], AppendTo[a,e]]]]; a
  • PARI
    dr(n) = if(n, (n-1)%9+1); \\ A010888
    expo(n, k) = if (n<=1, n, logint(n, k));
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if (dr(n^k) == n, listput(list, n^k)););); my(w=vecsort(Vec(list)), ws=apply(x->dr(x), w)); vector(#w, k, expo(w[k], ws[k])); \\ Michel Marcus, Feb 27 2025

Extensions

More terms from Michel Marcus, Feb 27 2025

A381487 Numbers which are a power of their digital root.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 128, 256, 512, 729, 2401, 6561, 8192, 16384, 32768, 59049, 78125, 524288, 531441, 823543, 1048576, 2097152, 4782969, 33554432, 43046721, 67108864, 134217728, 282475249, 387420489, 1220703125, 2147483648, 3486784401, 4294967296
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 128 is a term since 128 = 2^7 = A010888(128)^7.
		

Crossrefs

Digital root of k^n: A000012 (1), A153130 (2), A100401 (3), A100402 (4), A070366 (5), A100403 (6), A070403 (7), A010689 (8), A010734 (9).

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[Log[A010888[k],k]], AppendTo[a,k]]]]; a
  • PARI
    isok(k) = if ((k==0) || (k==1), return(1)); my(d=(k-1)%9+1); if (d>1, d^logint(k, d) == k); \\ Michel Marcus, Feb 26 2025
    
  • PARI
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if ((n^k-1)%9+1 == n, listput(list, n^k)););); vecsort(Vec(list)); \\ Michel Marcus, Feb 27 2025

Formula

a(n) = A381491(n)^A381492(n).
Showing 1-2 of 2 results.