cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A000178 Superfactorials: product of first n factorials.

Original entry on oeis.org

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - Amarnath Murthy, Jan 02 2002
Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - Benoit Cloitre, May 19 2002
Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - Benoit Cloitre, May 19 2002
a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - Philippe Deléham, Mar 07 2004
Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - T. D. Noe, Aug 21 2004
Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - T. D. Noe, Dec 04 2004
The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - Peter Luschny, Jul 14 2009
For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - Enrique Pérez Herrero, Jun 21 2010
a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - Emeric Deutsch, Sep 21 2011
a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - Wolfdieter Lang, Aug 27 2013
a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - Chad Brewbaker, Nov 03 2013
The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - Charles R Greathouse IV, Aug 15 2014
a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - Stoyan Apostolov, Aug 26 2014
All terms are in A064807 and all terms after a(2) are in A005101. - Ivan N. Ianakiev, Sep 02 2016
Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - John M. Campbell, Dec 13 2016
Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - John M. Campbell, Dec 27 2016
Also the automorphism group order of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - Michael Somos, Mar 11 2020
Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - Bernard Schott, Nov 29 2021

Examples

			a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
    
  • Maple
    A000178 := proc(n)
        mul(i!,i=1..n) ;
    end proc:
    seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
  • Mathematica
    a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
    Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
    FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
    RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
    BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
  • Maxima
    A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
    
  • PARI
    A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • PARI
    for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
    
  • Python
    A000178_list, n, m = [1], 1,1
    for i in range(1,100):
        m *= i
        n *= m
        A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
    
  • Python
    from math import prod
    def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def comm_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            i.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
        puts comm_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - Amiram Eldar, Nov 19 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)

A074947 Numerators of Sum_{k=1..n} 1/lcm(n,k).

Original entry on oeis.org

1, 1, 5, 5, 37, 47, 69, 263, 1321, 1429, 9901, 17249, 113741, 161191, 32867, 158363, 3157279, 5777183, 18358381, 20649997, 9258477, 10610101, 24266365, 2411391361, 2299685867, 1072410923, 22804031069, 27841579901, 395718022103
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

a(n)/A074949(n) is the asymptotic density of numbers that are divisible by their digital root in base n+1 (e.g., A064807 for base 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 1, 5/6, 5/6, 37/60, 47/60, 69/140, 263/420, 1321/2520, 1429/2520, ...
		

Crossrefs

Cf. A064807, A074949 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator @ Sum[1/LCM[k, n], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, Jan 31 2021 *)
  • PARI
    a(n)=numerator(sum(i=1,n,1/lcm(n,i)))

A174864 a(1) = 1, a(n) = square of the sum of previous terms.

Original entry on oeis.org

1, 1, 4, 36, 1764, 3261636, 10650053687364, 113423713055411194304049636, 12864938683278671740537145884937248491231415124195364
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 31 2010

Keywords

Comments

a(n) divides a(n+1) with result a square.
Except for first two terms, partial sum k of a(n) is divisible by 6.
These numbers are divisible by their digital roots, which makes the sequence a subsequence of A064807. - Ivan N. Ianakiev, Oct 09 2013
a(n) is the number of binary trees in which the nodes are labeled by nonnegative integer heights, the left and right children of each node (if present) must have smaller height, and the root has height n-2. For instance, there are four trees with root height 1: the left and right children of the root may or may not be present, and must each be at height 0 if present. - David Eppstein, Oct 25 2018

Crossrefs

Programs

  • Mathematica
    t = {1}; Do[AppendTo[t, Total[t]^2], {n, 9}]; t (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
    Join[{1},FoldList[(#+Sqrt[#])^2&,1,Range[7]]] (* Ivan N. Ianakiev, May 08 2015 *)
  • PARI
    a=vector(10);a[1]=a[2]=1;for(n=3,#a,a[n]=a[n-1]*(sqrtint(a[n-1])+1)^2);a

Formula

a(n+1) = (a(n) + sqrt(a(n)))^2 = a(n) * (sqrt(a(n)) + 1)^2 for n > 1. - Charles R Greathouse IV, Jun 30 2011
a(n) = A000058(n-1) - A000058(n-2), n>=2. - Ivan N. Ianakiev, Oct 09 2013
a(n+2) + 1 = ( A000058(n+1)^2+1 ) / ( A000058(n)^2+1 ). - Bill Gosper, Hugo Pfoertner, May 09 2021

A234474 Numbers that are divisible by their digital sum and digital root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 198, 200, 201, 204
Offset: 1

Views

Author

Mihir Mathur, Dec 26 2013

Keywords

Comments

Though a large number of initial terms match, it is different from A005349. First missing term is A005349(57) = 195.

Examples

			198 is a term of the sequence as it is divisible by its digital sum i.e., 18 and by its digital root i.e., 9.
		

Crossrefs

Intersection of A064807 and A005349.

Programs

  • Mathematica
    Select[Range[200],Divisible[#,Total[IntegerDigits[#]] &&  Divisible[#, #-9*Floor[(#-1)/9]]]&] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    is(n)=my(d=sumdigits(n)); n%d==0 && n%((d-1)%9+1)==0 \\ Charles R Greathouse IV, Dec 26 2013

A087143 Numbers n such that sum of digits of n is divisible by digital root of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 64, 66, 70, 71, 72, 73, 75, 80, 81, 82, 84, 90
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 18 2003

Keywords

Comments

A007953(a(n)) mod A010888(a(n)) = 0; multiples of 9 are a subsequence (A008591, n>0).

Examples

			84 is a term because 12 (its sum of digits) is divisible by 3 (its digital root).
		

Crossrefs

Complement of A087144.

Programs

  • Maple
    A087143 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(add(d, d=convert(k,base,10)) mod (((k-1) mod 9) + 1) = 0)then return k: fi: od: end: seq(A087143(n),n=1..100); # Nathaniel Johnston, May 05 2011
  • Mathematica
    sddrQ[n_]:=Module[{sd=Total[IntegerDigits[n]],dr},dr=sd;While[dr>9, dr= Total[ IntegerDigits[dr]]];Divisible[sd,dr]]; Select[Range[100],sddrQ] (* Harvey P. Dale, May 22 2013 *)
  • PARI
    is(n)=sumdigits(n)%((n-1)%9+1) == 0 \\ Charles R Greathouse IV, Oct 13 2022

A117959 Perrin numbers which are divisible by their digital root.

Original entry on oeis.org

2, 3, 5, 7, 10, 12, 39, 90, 486, 1130, 1497, 1983, 3480, 4610, 10717, 24914, 33004, 57918, 76725, 134643, 178364, 549289, 727653, 1691588, 2240877, 2968530, 3932465, 5209407, 12110402, 28153269, 65448410, 86700684, 114853953, 1089264462, 1911525877, 3354494070
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 03 2006

Keywords

Examples

			1130 is in the sequence because (1) it is a Perrin number, (2) the digital root is 5 and (3) 1130 is divisible by 5.
		

Crossrefs

Intersection of A001608 and A064807.
Cf. A010888.

Programs

  • Maple
    R:= NULL: count:= 0:
    a:= 3: b:= 0: c:= 2:
    while count < 100 do
      q:= a+b;
      a:= b; b:= c; c:= q;
      dr:= c mod 9; if dr = 0 then dr:= 9 fi;
      if c mod dr = 0 then R:= R,c; count:= count+1;
      fi
    od:
    sort(convert({R},list)); # Robert Israel, Mar 16 2023
  • Mathematica
    Select[Union @ LinearRecurrence[{0, 1, 1}, {2, 3, 2}, 100], Divisible[#, Mod[# - 1, 9] + 1] &] (* Amiram Eldar, Feb 06 2021 *)

Extensions

Data corrected by Amiram Eldar, Feb 06 2021

A118575 Dividuus numbers: numbers which are divisible by (1) the sum of their digits,(2) the product of their digits,(3) the digital root and (4) the multiplicative digital root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 111, 112, 132, 135, 144, 216, 312, 315, 432, 612, 624, 1116, 1212, 1344, 1416, 2112, 2232, 3168, 3312, 4112, 4224, 6624, 8112, 11112, 11115, 11133, 11172, 11232, 11313, 11331, 11424, 11664, 12132, 12216, 12312, 12432
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 07 2006

Keywords

Comments

Dividuus : Latin for "divisible" Most of these numbers are even, but there are some odd numbers too. However, none of them seem to end on 7 (except for the obvious number 7 itself). Are there numbers in the sequence ending in 7?

Examples

			624 is in the sequence because (1) the sum of its digits is 6+4+2=12, (2) the product of its digits is 6*4*2=48, (3) the digital root is 3, (4) the multiplicative digital root is 6 and 624 is divisible by 12,48,3 and 6.
		

Crossrefs

Cf. A007953 (sum of digits), A007954 (product of digits), A010888 (digital root), A031347 (multiplicative digital root).
Intersection of A038186 and A064700 and A064807.
Subsequence of A005349, A007602, A038186, A064700, A064807.

Programs

  • Maple
    filter:= proc(n)
    local L, s,p;
      L:= convert(n,base,10);
      s:= convert(L,`+`);
      if n mod s <> 0 then return false fi;
      p:= convert(L,`*`);
      if p = 0 or n mod p <> 0 then return false fi;
      while s > 10 do
        s:= convert(convert(s,base,10),`+`);
      od:
      if n mod s <> 0 then return false fi;
      while p > 10 do
        p:= convert(convert(p, base, 10),`*`);
      od:
      p > 0 and n mod p = 0;
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Aug 24 2014
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import t_mod, mpz
    def A031347(n):
        while n > 9:
            n = reduce(mul, (int(d) for d in str(n)))
        return n
    A118575 = [n for n in range(1, 10**9) if A031347(n) and not
               (str(n).count('0') or t_mod(n, (1+t_mod((n-1), 9))) or
               t_mod(n, A031347(n)) or t_mod(n,sum((mpz(d) for d in str(n))))
               or t_mod(n, reduce(mul,(mpz(d) for d in str(n)))))]
    # Chai Wah Wu, Aug 26 2014

Extensions

Inserted a(17)=216 by Chai Wah Wu, Aug 24 2014

A118695 Semiprimes which are divisible by their digital root.

Original entry on oeis.org

4, 6, 9, 10, 21, 38, 39, 46, 55, 57, 74, 82, 91, 93, 95, 111, 118, 129, 133, 145, 146, 183, 185, 201, 217, 218, 219, 226, 235, 237, 253, 254, 259, 262, 289, 291, 298, 309, 326, 327, 334, 361, 362, 365, 381, 398, 415, 417, 451, 453, 469, 471, 478, 489, 505, 511, 514, 542, 543
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 20 2006

Keywords

Examples

			95 is a semiprime and it is divisible by its digital root 5.
		

Crossrefs

Intersection of A001358 and A064807.
Cf. A010888.

Programs

  • Mathematica
    Select[Range[550], PrimeOmega[#] == 2 && Divisible[#, Mod[# - 1, 9] + 1] &] (* Amiram Eldar, Feb 06 2021 *)

Extensions

Data corrected by Amiram Eldar, Feb 06 2021

A234814 Numbers that are divisible by their digital sum but not by their digital root.

Original entry on oeis.org

195, 209, 247, 266, 285, 375, 392, 407, 465, 476, 481, 518, 555, 592, 605, 629, 644, 645, 715, 735, 736, 782, 803, 825, 880, 915, 935, 1066, 1095, 1148, 1168, 1183, 1185, 1274, 1275, 1365, 1394, 1417, 1455, 1526, 1534, 1545, 1547, 1635, 1651, 1652, 1679, 1725, 1744, 1815, 1853, 1886, 1898, 1904, 1905
Offset: 1

Views

Author

Mihir Mathur, Dec 31 2013

Keywords

Comments

These are the Harshad numbers which are missing from A234474.

Examples

			195 is a term as it is divisible by its digital sum i.e. 15 but not by its digital root i.e. 6.
		

Crossrefs

Programs

  • Haskell
    a234814 n = a234814_list !! (n-1)
    a234814_list = filter (\x -> x `mod` a007953 x == 0 &&
                                 x `mod` a010888 x /= 0) [1..]
    -- Reinhard Zumkeller, Mar 04 2014
  • Mathematica
    Select[Range@1905, Mod[#, 1 + Mod[#-1, 9]] > 0 && Mod[#, Plus@@ IntegerDigits@ #] == 0 &] (* Giovanni Resta, Jan 03 2014 *)
Showing 1-10 of 10 results.