cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1918 results. Next

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
		

Crossrefs

Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.

Programs

  • Mathematica
    nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
    nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
  • Python
    from sympy import prime, primefactors
    def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
    def a276086(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m
    def a(n): return Omega(a276086(n))
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024

A143293 Partial sums of A002110, the primorial numbers.

Original entry on oeis.org

1, 3, 9, 39, 249, 2559, 32589, 543099, 10242789, 233335659, 6703028889, 207263519019, 7628001653829, 311878265181039, 13394639596851069, 628284422185342479, 33217442899375387209, 1955977793053588026279, 119244359152460559009549, 7977565910232727614888639
Offset: 0

Views

Author

Gary W. Adamson, Aug 05 2008

Keywords

Comments

After 3, this is never prime because all values thereafter are multiples of 3. Starting from a(6) all are also multiples of 17. - Jonathan Vos Post, Feb 10 2010
Starting from a(162) all are also multiples of 967. - Alex Ratushnyak, May 14 2013
Repunits in primorial base, A049345. - Antti Karttunen, Aug 21 2016

Examples

			a(3) = 39 = (1 + 2 + 6 + 30), where A002110 = (1, 2, 6, 30, 210, 2310,...).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1$2], (h->
          (p-> [p, p+h[2]])(ithprime(n)*h[1]))(b(n-1)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..19);  # Alois P. Heinz, Feb 23 2022
  • Mathematica
    Table[s = 1; Do[s = 1 + s*Prime[i], {i, n, 1, -1}]; s, {n, 0, 20}] (* T. D. Noe, May 03 2013 *)
    Accumulate[FoldList[Times,1,Prime[Range[20]]]] (* Harvey P. Dale, Feb 05 2015 *)
  • PARI
    a(n)=if(n==0,return(1)); my(P=1,s=1); forprime(p=2,prime(n), s+=P*=p); s \\ Charles R Greathouse IV, Feb 05 2014
    
  • Python
    from itertools import chain, accumulate, count, islice
    from operator import mul
    from sympy import prime
    def A143293_gen(): # generator of terms
        return accumulate(accumulate(chain((1,),(prime(n) for n in count(1))), mul))
    A143293_list = list(islice(A143293_gen(),20)) # Chai Wah Wu, Feb 23 2022

Formula

a(n) = Sum_{k=0..n} prime(k)#, where prime(n)# = A002110(n).
a(n) = A276085(A002110(1+n)). - Antti Karttunen, Aug 21 2016

Extensions

a(11)-a(19) from Jonathan Vos Post, Feb 10 2010

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A238745 a(1) = 1; for n > 1, if the first integer with the same prime signature as n is factorized into primorials as Product A002110(i)^e(i), then a(n) = Product prime(i)^e(i).

Original entry on oeis.org

1, 2, 2, 4, 2, 3, 2, 8, 4, 3, 2, 6, 2, 3, 3, 16, 2, 6, 2, 6, 3, 3, 2, 12, 4, 3, 8, 6, 2, 5, 2, 32, 3, 3, 3, 9, 2, 3, 3, 12, 2, 5, 2, 6, 6, 3, 2, 24, 4, 6, 3, 6, 2, 12, 3, 12, 3, 3, 2, 10, 2, 3, 6, 64, 3, 5, 2, 6, 3, 5, 2, 18, 2, 3, 6, 6, 3, 5, 2, 24, 16, 3, 2
Offset: 1

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

Alternate definition: a(1) = 1; for n > 1, if row n of table A238744 is {k(1), k(2),...,k(A051903(n))}, then a(n) = Product {i = 1 to A051903(n)} prime(k(i)).
Since the first integer of each prime signature (A025487) is always a product of primorials (A002110), there is always a value for a(n). Every positive integer appears in the sequence.
a(m) = a(n) iff m and n have the same prime signature. If the prime signatures of m and n are conjugate to each other when they are viewed as partitions, then a(n) = A181819(m) and a(m) = A181819(n).

Examples

			The first integer with the same prime signature as 40 is 24 = 2^3*3. Since the factorization of 24 into primorials is 24 = 2^2*6 = A002110(1)^2*A002110(2), a(24) = a(40) = prime(1)^2*prime(2) = 2^2*3 = 12.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, d, a}, While[n - Times @@ Prime@ Range[k + 1] >= 0, k++]; If[n == Product[Prime@ i, {i, k}], Prime@ k, d = Select[Reverse@ FoldList[#1 #2 &, Prime@ Range@ k], Divisible[n, #] &]; If[AllTrue[#, IntegerQ], Times @@ Map[(FactorInteger[#1][[-1, 1]])^#2 & @@ # &, Reverse@ Tally@ #], False] &@ Rest@ NestWhileList[Function[P, {#1/P, P}]@ SelectFirst[d, Function[k, Divisible[#1, k]]] & @@ # &, {n, 1}, First@ # > 1 &][[All, -1]]]]; Table[f@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]] - Boole[n == 1], {n, 83}] (* Michael De Vlieger, May 19 2017, Version 10.2 *)

Formula

a(n) = A181819(A124859(n)).
a(n) = A122111(A181819(n)).

A054640 a(n) is the sum of the divisors of the n-th primorial: a(n) = A000203(A002110(n)).

Original entry on oeis.org

1, 3, 12, 72, 576, 6912, 96768, 1741824, 34836480, 836075520, 25082265600, 802632499200, 30500034969600, 1281001468723200, 56364064623820800, 2705475101943398400, 146095655504943513600, 8765739330296610816000, 543475838478389870592000, 36956357016530511200256000
Offset: 0

Views

Author

Labos Elemer, May 15 2000

Keywords

Crossrefs

Programs

  • Magma
    [1/2*&*[(1+NthPrime(k)): k in [0..n-1]]: n in [1..19]]; // Vincenzo Librandi, May 08 2017
    
  • Maple
    a:= n-> mul(1+ithprime(j), j=1..n): seq(a(n), n=0..20); # Zerinvary Lajos, Aug 24 2008
  • Mathematica
    Table[Product[1 + Prime[i], {i,n-1}], {n,100}] (* Geoffrey Critzer, Dec 01 2014 *)
  • PARI
    a(n)=prod(i=1,n,prime(i)+1) \\ Charles R Greathouse IV, Feb 13 2013
    
  • SageMath
    def A054640(n): return product(nth_prime(j)+1 for j in range(1,n+1))
    [A054640(n) for n in range(41)] # G. C. Greubel, Aug 05 2024

Formula

a(n+1) = a(n)*(prime(n) + 1) = a(n)*A028815(n) (quotient=n-th prime+1 starting with 2).
a(n) ~ (6/Pi^2) * exp(gamma) * A002110(n) * log(prime(n)) + O(A002110(n)) (Jakimczuk, 2017). - Amiram Eldar, Feb 17 2021
a(n) = a(n-1) * A008864(n). - Flávio V. Fernandes, Mar 20 2021
a(n) = A002110(n) + A074107(n), a(n) <= A070826(1+n) [= A002110(1+n)/2] < A051674(n). - Antti Karttunen, Nov 19 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 01 2021

A129912 Numbers that are products of distinct primorial numbers (see A002110).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, 4620, 6300, 12600, 13860, 27720, 30030, 37800, 60060, 69300, 75600, 138600, 180180, 360360, 415800, 485100, 510510, 831600, 900900, 970200, 1021020, 1801800, 2910600, 3063060, 5405400
Offset: 1

Views

Author

Bill McEachen, Jun 05 2007, Jun 06 2007, Jul 06 2007, Aug 07 2007

Keywords

Comments

Conjecture: every odd prime p is either adjacent to a term of A129912 or a prime distance q from some term of A129912, where q < p. - Bill McEachen, Jun 03 2010, edited for clarity in Feb 26 2019
The first 2^20 terms k > 2 of A283477 all satisfy also the condition that the differences k-A151799(k) and A151800(k)-k are always either 1 or prime, like is also conjectured to hold for A002182 (cf. also the conjecture given in A117825). However, for A025487, which is a supersequence of both sequences, this is not always true: 512 is a member of A025487, but A151800(512) = 521, with 521 - 512 = 9, which is a composite number. - Antti Karttunen, Feb 26 2019

Examples

			For s = 4 there are 8 (generally 2^(s-1)) such numbers: 210 = 2*3*5*7, 420 = 2^2*3*5*7 = (2*3*5*7)*2, 1260 = 2^2*3^2*5*7 = (2*3*5*7)*(2*3), 6300 = 2^2*3^2*5^2*7 = (2*3*5*7)*(2*3*5), 2520 = 2^3*3^2*5*7 = (2*3*5*7)*(2*3)*2, 12600 = 2^3*3^2*5^2*7 = (2*3*5*7)*(2*3*5)*2, 37800 = 2^3*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3), 75600 = 2^4*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3)*2.
		

References

  • CRC Standard Mathematical Tables, 28th Ed., CRC Press

Crossrefs

Subsequence of A025487. Sequence A283477 sorted into ascending order.

Programs

  • Mathematica
    Clear[f]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m-1], m++]; f[m] (* Jean-François Alcover, Mar 03 2014 *) (* or *)
    pr[n_] := Product[Prime[n + 1 - i]^i, {i, n}]; upto[mx_] := Block[{ric, j = 1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1, Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip + 1, ex - 1]]]]; Sort@ Reap[ Sow[1]; While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]];
    upto[10^30] (* faster, Giovanni Resta, Apr 02 2017 *)
  • PARI
    is(n)=my(o=valuation(n,2),t); if(o<1||n<2, return(n==1)); n>>=o; forprime(p=3,, t=valuation(n,p); n/=p^t; if(t>o || tCharles R Greathouse IV, Oct 22 2015

Formula

Apart from 1 and 2, numbers of the form 2^k(1)*3^k(2)*5^k(3)*...*p(s)^k(s), where p(s) is s-th prime, k(i)>0 for i=1..s, k(i)-k(i-1) = 0 or 1 for i=2..s and |{k(1),k(2),..,k(s)}|=k(1). - Vladeta Jovovic, Jun 14 2007
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/A002110(n)) = 1.8177952875... . - Amiram Eldar, Jun 03 2023

Extensions

Edited by N. J. A. Sloane, Jun 09 2007, Aug 08 2007
I corrected the Potter link to reflect its relocation. - Bill McEachen, Sep 12 2009
I added link to Wikicommons image. - Bill McEachen, Sep 16 2009
I again corrected the Potter link for its relocation - Bill McEachen, May 30 2013

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A053589 Greatest primorial number (A002110) which divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000

Keywords

Examples

			a(30) = 30 because 30=2*3*5, a(15) = 1 because 15=3*5.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1)..a(N)
    P:= 1: p:= 1:
    A:= Vector(N,1):
    do
      p:= nextprime(p);
      P:= P*p;
      if P > N then break fi;
      A[[seq(i,i=P..N,P)]]:= P;
    od:
    convert(A,list); # Robert Israel, Aug 30 2016
  • Mathematica
    Table[k = 1; While[Divisible[n, Times @@ Prime@ Range@ k], k++]; Times @@ Prime@ Range[k - 1], {n, 120}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    a(n)=my(f=factor(n), r = 1, k = 1, p); while(k<=matsize(f)[1], p=prime(k); if(f[k,1]!=p,return(r));r*=p; k++) ; r
    a(n) = my(r = 1, p = 2); while(n/p==n\p, r*=p; p=nextprime(p+1));r
    \\ list of all terms up to n#.
    lista(n) = my(l = List([1]),k,s=1); forprime(i=2,n, for(j=1,i-1, for(k=1,s, listput(l,l[k]))); l[#l]*=i; s=#l); l \\ David A. Corneth, Aug 30 2016
    
  • PARI
    a(n)=my(s=1); forprime(p=2,, if(n%p, return(s), s *= p)) \\ Charles R Greathouse IV, Sep 07 2016
  • Scheme
    (define (A053589 n) (A002110 (A276084 n))) ;; Antti Karttunen, Aug 30 2016
    

Formula

From Antti Karttunen, Aug 30 2016: (Start)
a(n) = A002110(A276084(n)).
a(n) = n/A111701(n).
A276157(n) = A260188(n)/a(n).
(End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 02 2000

A328768 The first primorial based variant of arithmetic derivative: a(prime(i)) = A002110(i-1), where prime(i) = A000040(i), a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 7, 30, 12, 12, 17, 210, 20, 2310, 67, 28, 32, 30030, 33, 510510, 44, 104, 431, 9699690, 52, 60, 4633, 54, 148, 223092870, 71, 6469693230, 80, 652, 60077, 192, 84, 200560490130, 1021039, 6956, 108, 7420738134810, 229, 304250263527210, 884, 114, 19399403, 13082761331670030, 128, 420, 145, 90124, 9292, 614889782588491410, 135, 1116, 324
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. A042965 (indices of even terms), A016825 (of odd terms), A152822 (antiparity of terms), A373992 (indices of multiples of 3), A374212 (2-adic valuation), A374213 (3-adic valuation), A374123 [a(n) mod 360].
Cf. A374031 [gcd(a(n), A276085(n))], A374116 [gcd(a(n), A328845(n))].
For variants of the same formula, see A003415, A258851, A328769, A328845, A328846, A371192.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    
  • PARI
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1]))/(f[i, 1]^2)));

Formula

a(n) = n * Sum e_j * A276085(p_j)/p_j for n = Product p_j^e_j, where for primes p, A276085(p) = A002110(A000720(p)-1).
a(n) = n * Sum e_j * (p_j)#/(p_j^2) for n = Product p_j^e_j with (p_j)# = A034386(p_j).
For all n >= 0, A276150(a(n)) = A328771(n).
Showing 1-10 of 1918 results. Next