A285053 Multiplications between idempotent equivalence classes for n X n matrices over GF(2).
1, 4, 118, 27080
Offset: 1
Crossrefs
The idempotents are enumerated in A132186.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Chad Brewbaker has authored 72 sequences. Here are the ten most recent ones:
For n=2: [([0,0],[0,0],[0,0]),([0,0],[0,1],[0,0]),([0,0],[1,1],[0,0]),([0,1],[0,0],[0,0]),([0,1],[0,1],[0,1]),([0,1],[1,1],[1,1]),([0,1],[0,0],[1,1]),([0,1],[1,1],[0,0]),([1,1],[0,0],[1,1]),([1,1],[0,1],[1,1]),([1,1],[1,1],[1,1])]
For n=3, 0->0 (cycle length 1), 1->1 (cycle length 1) and 2->1->2 (cycle length 2); 1+1+2 = 4. The triangle of the cycle lengths is: 1 ; 1, 1 ; 1, 1, 2 ; 1, 1, 1, 2 ; 1, 1, 4, 4, 2 ; 1, 1, 2, 1, 1, 2 ; 1, 1, 3, 6, 3, 6, 2 ; 1, 1, 1, 2, 1, 2, 1, 2 ; 1, 1, 6, 1, 3, 6, 1, 3, 2 ; 1, 1, 4, 4, 2, 1, 1, 4, 4, 2 ;
A285055Tr := proc(n,m) local a,nmap,cyc ; nmap := n ; cyc := [n] ; for a from 1 do nmap := modp(nmap*n,m) ; if member(nmap,cyc,'i') then return nops(cyc)-i+1; else cyc := [op(cyc),nmap] ; end if; end do: end proc: A285055 := proc(m) add(A285055Tr(n,m),n=0..m-1) ; end proc: seq(A285055(m),m=1..30) ; # R. J. Mathar, May 06 2017
For n=6: [(0,0,0),(0,1,0),(0,4,0),(0,3,0),(1,0,0),(1,1,1),(1,4,4),(1,3,3),(4,0,0),(4,1,4),(4,4,4),(4,3,0),(3,0,0),(3,1,3),(3,4,0),(3,3,3)], so a(6) = 16.
A[n_] := If[n == 0, 1, Sum[(n!/(n - k)!) Binomial[n, k] (n k)^(n - k), {k, 1, n}]] Table[A[n],{n,10}] (* David Einstein, Oct 10 2016 *)
a(n) = sum(k= 0, n, (n!/(n-k)!)*binomial(n,k)*(n*k)^(n-k)); \\ Michel Marcus, Oct 11 2016; corrected Jun 13 2022
Comments