cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Chad Brewbaker

Chad Brewbaker's wiki page.

Chad Brewbaker has authored 72 sequences. Here are the ten most recent ones:

A285053 Multiplications between idempotent equivalence classes for n X n matrices over GF(2).

Original entry on oeis.org

1, 4, 118, 27080
Offset: 1

Author

Chad Brewbaker, Apr 08 2017

Keywords

Comments

With the n X n matrices over GF(2) construct 3-tuples (a,b,c) where a*b = c. Map each of the three elements to their idempotent under self multiplication. Filter on unique 3-tuples.

Crossrefs

The idempotents are enumerated in A132186.

A285051 Idempotent equivalence class multiplications for the full transformation semigroup.

Original entry on oeis.org

1, 11, 268, 13705, 1122726
Offset: 1

Author

Chad Brewbaker, Apr 08 2017

Keywords

Comments

Over all n^n transformations create a list of 3-tuples (a,b,c) where a*b = c. For each tuple map each of the three elements to its idempotent under self-composition, (g^i)*(g^i) = g^i. Collect the unique 3-tuples.

Examples

			For n=2: [([0,0],[0,0],[0,0]),([0,0],[0,1],[0,0]),([0,0],[1,1],[0,0]),([0,1],[0,0],[0,0]),([0,1],[0,1],[0,1]),([0,1],[1,1],[1,1]),([0,1],[0,0],[1,1]),([0,1],[1,1],[0,0]),([1,1],[0,0],[1,1]),([1,1],[0,1],[1,1]),([1,1],[1,1],[1,1])]
		

A285055 Sum of the cycle lengths of the elements 0,1,...n-1, in Zn under multiplication.

Original entry on oeis.org

1, 2, 4, 5, 12, 8, 22, 11, 24, 24, 64, 18, 78, 44, 38, 31, 172, 48, 184, 50, 74, 128, 334, 38, 236, 156, 192, 96, 474, 76, 442, 103, 214, 344, 194, 106, 672, 368, 242, 102, 904, 148, 904, 278, 218, 668, 1522, 102, 910, 472, 518, 320, 1728, 384, 558, 200, 614, 948
Offset: 1

Author

Chad Brewbaker, Apr 08 2017

Keywords

Examples

			For n=3, 0->0 (cycle length 1), 1->1 (cycle length 1) and 2->1->2 (cycle length 2); 1+1+2 = 4.
The triangle of the cycle lengths is:
1 ;
1, 1 ;
1, 1, 2 ;
1, 1, 1, 2 ;
1, 1, 4, 4, 2 ;
1, 1, 2, 1, 1, 2 ;
1, 1, 3, 6, 3, 6, 2 ;
1, 1, 1, 2, 1, 2, 1, 2 ;
1, 1, 6, 1, 3, 6, 1, 3, 2 ;
1, 1, 4, 4, 2, 1, 1, 4, 4, 2 ;
		

Crossrefs

See A060014 for permutations on n elements.

Programs

  • Maple
    A285055Tr := proc(n,m)
        local a,nmap,cyc ;
        nmap := n ;
        cyc := [n] ;
        for a from 1 do
            nmap := modp(nmap*n,m) ;
            if member(nmap,cyc,'i') then
                return nops(cyc)-i+1;
            else
                cyc := [op(cyc),nmap] ;
            end if;
        end do:
    end proc:
    A285055 := proc(m)
        add(A285055Tr(n,m),n=0..m-1) ;
    end proc:
    seq(A285055(m),m=1..30) ; # R. J. Mathar, May 06 2017

A285052 Number of idempotent equivalence classes for multiplication in Zn.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 4, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 4, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 16, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 4, 16, 64, 4, 16, 16, 64, 4, 16, 4, 16, 16, 16, 16, 64, 4, 16, 4, 16, 4, 64, 16, 16, 16, 16, 4, 64, 16
Offset: 1

Author

Chad Brewbaker, Apr 08 2017

Keywords

Comments

Consider triples (a,b,c) over Zn where a*b=c. Map each of the three elements to its idempotent under self multiplication, (g^i) * (g^i) = (g^i). Count the distinct triples.

Examples

			For n=6: [(0,0,0),(0,1,0),(0,4,0),(0,3,0),(1,0,0),(1,1,1),(1,4,4),(1,3,3),(4,0,0),(4,1,4),(4,4,4),(4,3,0),(3,0,0),(3,1,3),(3,4,0),(3,3,3)], so a(6) = 16.
		

Formula

Conjecture: a(n) = 4^A001221(n).

A239785 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(g(x))) = f(g(x)).

Original entry on oeis.org

1, 1, 14, 411, 19912, 1412745, 136537056, 17121680443
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239784 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(g(x))) = f(g(f(x))).

Original entry on oeis.org

1, 1, 14, 351, 14776, 902605, 75313056, 8194699387
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239783 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(x)) = f(g(f(x))).

Original entry on oeis.org

1, 1, 14, 339, 12496, 639005, 42829536, 3624387739
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239782 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(g(f(x))) = f(f(g(x))).

Original entry on oeis.org

1, 1, 14, 321, 12256, 682985, 52551216, 5333977789
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239768 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(x) = f(g(f(x))).

Original entry on oeis.org

1, 1, 10, 195, 6808, 362745, 26848656, 2621263519, 324981308800, 49669569764433, 9146879704748800, 1993011341241988551, 506190915590699695104, 148000190814308473203433, 49289886405448749446514688, 18529196186934893511062427375, 7800708229072237749055062900736, 3652486190893312491910941333813537
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Programs

  • Mathematica
    A[n_] := If[n == 0, 1, Sum[(n!/(n - k)!) Binomial[n, k] (n k)^(n - k), {k, 1, n}]]
    Table[A[n],{n,10}] (* David Einstein, Oct 10 2016 *)
  • PARI
    a(n) = sum(k= 0, n, (n!/(n-k)!)*binomial(n,k)*(n*k)^(n-k)); \\ Michel Marcus, Oct 11 2016; corrected Jun 13 2022

Formula

a(n) = Sum_{k=0..n} (n!/(n-k)!) * C(n,k) * (n*k)^(n-k). - David Einstein, Oct 10 2016

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(17) from David Einstein, Oct 10 2016

A239766 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(x)) = f(g(g(x))).

Original entry on oeis.org

1, 1, 10, 195, 5992, 260085, 14922576, 1087100371
Offset: 0

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014