cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Einstein

David Einstein's wiki page.

David Einstein has authored 2 sequences.

A275025 Number of pairs of functions (f,g) on [n] such that fg is an idempotent.

Original entry on oeis.org

1, 1, 14, 411, 21208, 1703145, 195285456, 30113813863, 5985071842688, 1485696848042385, 449588756524844800, 162668114715527356551, 69259775641873646754816, 34243366782512243213286169, 19439795735713938153732810752, 12549399357405863545478828022375
Offset: 0

Author

David Einstein, Nov 12 2016

Keywords

Examples

			The fourteen pairs of functions on [2] are: ([1,1], [1,1]), ([1,1], [1,2]), ([1,1], [2,1]), ([1,1], [2,2]), ([1,2], [1,1]), ([1,2], [1,2]), ([1,2], [2,2]), ([2,1], [1,1]), ([2,1], [2,1]), ([2,1], [2,2]), ([2,2], [1,1]), ([2,2], [1,2]), ([2,2], [2,1]), ([2,2], [2,2]).
		

Crossrefs

Formula

a(n) = Sum_{k = 0..n} ((n!)^2/k!) Sum_{j = 0..n-k} 1/(j!(n-k-j)!) Sum_{l = 0..j} k^(n-k-j+l) n^(n-k-l) stirling2(j,l)/(n-k-l)!.

A277337 Number of pairs of functions (f,g) from a set of n elements into itself that are generalized reflexive inverses of each other.

Original entry on oeis.org

1, 1, 6, 87, 2056, 71145, 3355956, 203899087, 15451934016, 1419181414929, 154796303577700, 19713331210664751, 2891162097251141616, 482733064744447450297, 90871916094948544512516, 19125402877558442317308975, 4467829768503489097383022336, 1151133088512781095709101702177, 325279313240363190497696752254276
Offset: 0

Author

David Einstein, Oct 09 2016

Keywords

Comments

The number of pairs of functions (f,g) from a set of n elements into itself such that f(g(f(x))) = f(x) and g(f(g(x))) = g(x).

Examples

			For n=2 the a(2)=6 solutions are
1: [1,1] [1,1]
2: [1,1] [2,2]
3: [2,2] [1,1]
4: [2,2] [2,2]
5: [1,2] [1,2]
6: [2,1] [2,1]
		

Programs

  • Mathematica
    Flatten[{1, Table[Sum[n!*Binomial[n, k]*k^(2*(n-k))/(n-k)!, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2016 *)
  • PARI
    a(n) = sum(k = 1, n, n! / (n - k)! * binomial(n, k) * k^(2 * (n - k) ) ); \\ Joerg Arndt, Oct 10 2016

Formula

a(n) = Sum_{k=0..n} ((n! / (n - k)!) * C(n, k) * k^(2 * (n - k))).

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 20 2016