cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mohammed Yaseen

Mohammed Yaseen's wiki page.

Mohammed Yaseen has authored 31 sequences. Here are the ten most recent ones:

A378089 Irregular triangle read by rows in which row n lists the numbers k such that phi(k)/tau(k) = n.

Original entry on oeis.org

1, 3, 8, 10, 18, 24, 30, 5, 9, 15, 28, 40, 72, 84, 90, 120, 7, 21, 26, 56, 70, 78, 108, 126, 168, 210, 34, 45, 52, 102, 140, 156, 252, 360, 420, 11, 33, 88, 110, 198, 264, 330, 13, 35, 39, 63, 76, 104, 105, 130, 228, 234, 280, 312, 390, 504, 540, 630, 840, 58, 98, 174, 294
Offset: 1

Author

Mohammed Yaseen, Nov 16 2024

Keywords

Examples

			Triangle begins:
  n=1: 1, 3, 8, 10, 18, 24, 30;
  n=2: 5, 9, 15, 28, 40, 72, 84, 90, 120;
  n=3: 7, 21, 26, 56, 70, 78, 108, 126, 168, 210;
  n=4: 34, 45, 52, 102, 140, 156, 252, 360, 420;
  n=5: 11, 33, 88, 110, 198, 264, 330;
  n=6: 13, 35, 39, 63, 76, 104, 105, 130, 228, 234, 280, 312, 390, 504, 540, 630, 840;
  n=7: 58, 98, 174, 294;
  ...
		

Crossrefs

Cf. A000005 (tau), A000010 (phi).
Cf. A020488 (row 1), A062516 (row 2), A063469 (row 3), A063470 (row 4).
Cf. A112954 (row lengths), A175667 (1st column), A112955 (right column), A020491 (ordered terms).

A374896 Array read by falling antidiagonals: T(n,k) = denominator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 2, 1, 5, 16, 27, 8, 1, 6, 25, 32, 27, 1, 1, 7, 36, 125, 128, 81, 4, 1, 8, 49, 27, 625, 128, 243, 4, 1, 9, 64, 343, 216, 3125, 512, 243, 16, 1, 10, 81, 256, 2401, 81, 3125, 1024, 729, 1, 1, 11, 100, 729, 2048, 16807, 972, 15625, 4096, 2187, 4, 1
Offset: 0

Author

Mohammed Yaseen, Aug 03 2024

Keywords

Examples

			Array begins:
+-----+-----------------------------------------------+
| n\k |   2    3     4    5      6     7       8  ... |
+-----+-----------------------------------------------+
|  0  |   1    2     3    4      5     6       7  ... |
|  1  |   1    4     9   16     25    36      49  ... |
|  2  |   1    2    27   32    125    27     343  ... |
|  3  |   1    8    27  128    625   216    2401  ... |
|  4  |   1    1    81  128   3125    81   16807  ... |
|  5  |   1    4   243  512   3125   972  117649  ... |
|  6  |   1    4   243 1024  15625   486  823543  ... |
|  7  |   1   16   729 4096  78125 11664  823543  ... |
|  8  |   1    1  2187 2048 390625  2187 5764801  ... |
| ... | ...  ...   ...  ...    ...   ...     ...  ... |
+-----+-----------------------------------------------+
		

Crossrefs

Cf. A374895 (numerators).

Programs

  • PARI
    T(n,k) = denominator(polylog(-n, 1/k));
    matrix(7,7,n, k, T(n-1,k+1)) \\ Michel Marcus, Aug 04 2024

Formula

T(n,k) = denominator(polylog(-n, 1/k)).
T(n,k) = denominator(1/(k-1)^(n+1) * Sum_{m=1..n} A008292(n,m)*k^m).
T(0,k) = k-1.
T(1,k) = (k-1)^2.
T(2,k) = A277542(k-1).
T(n,2) = 1.
T(n,n) = A121985(n).

A374895 Array read by falling antidiagonals: T(n,k) = numerator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 3, 26, 1, 5, 20, 33, 150, 1, 6, 15, 44, 15, 1082, 1, 7, 42, 115, 380, 273, 9366, 1, 8, 7, 366, 285, 4108, 1491, 94586, 1, 9, 72, 91, 4074, 3535, 17780, 38001, 1091670, 1, 10, 45, 776, 70, 11334, 26355, 269348, 17295, 14174522, 1, 11, 110, 531, 10440, 2149, 189714, 458555, 4663060, 566733, 204495126
Offset: 0

Author

Mohammed Yaseen, Jul 22 2024

Keywords

Examples

			Array begins:
+-----+--------------------------------------------------------------+
| n\k |       2     3       4       5        6      7         8  ... |
+-----+--------------------------------------------------------------+
|  0  |       1     1       1       1        1      1         1  ... |
|  1  |       2     3       4       5        6      7         8  ... |
|  2  |       6     3      20      15       42      7        72  ... |
|  3  |      26    33      44     115      366     91       776  ... |
|  4  |     150    15     380     285     4074     70     10440  ... |
|  5  |    1082   273    4108    3535    11334   2149    174728  ... |
|  6  |    9366  1491   17780   26355   189714   3311   3525192  ... |
|  7  |   94586 38001  269348  458555  3706518 285929  11870648  ... |
|  8  | 1091670 17295 4663060 1139685 82749954 220430 319735800  ... |
| ... |     ...   ...     ...     ...      ...    ...       ...  ... |
+-----+--------------------------------------------------------------+
		

Crossrefs

Cf. A374896 (denominators).

Programs

  • PARI
    T(n,k) = numerator(polylog(-n, 1/k));
    matrix(7,7,n,k,T(n-1, k+1)) \\ Michel Marcus, Aug 04 2024

Formula

T(n,k) = numerator(polylog(-n, 1/k)).
T(n,k) = numerator(1/(k-1)^(n+1) * Sum_{m=1..n} A008292(n,m)*k^m).
T(0,k) = 1.
T(1,k) = k.
T(2,k) = A276805(k-1).
T(n,2) = A000629(n).
T(n,n) = A121376(n).

A373967 Triangle read by rows: T(n,k) = (-1)^n * n! + (-1)^(k+1) * k! for n >= 2 and 1 <= k <= n-1.

Original entry on oeis.org

3, -5, -8, 25, 22, 30, -119, -122, -114, -144, 721, 718, 726, 696, 840, -5039, -5042, -5034, -5064, -4920, -5760, 40321, 40318, 40326, 40296, 40440, 39600, 45360, -362879, -362882, -362874, -362904, -362760, -363600, -357840, -403200, 3628801, 3628798, 3628806, 3628776, 3628920, 3628080, 3633840, 3588480, 3991680
Offset: 2

Author

Mohammed Yaseen, Jun 24 2024

Keywords

Examples

			Triangle begins:
      3;
     -5,    -8;
     25,    22,    30;
   -119,  -122,  -114,  -144;
    721,   718,   726,   696,   840;
  -5039, -5042, -5034, -5064, -4920, -5760;
  ...
		

Crossrefs

Unsigned diagonals: A001048, A213167.

Programs

  • Mathematica
    T[n_,k_]:= (-1)^n*n! + (-1)^(k+1)*k!; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)

Formula

Integral_{1..e} (log(x)^k - log(x)^n) dx = A373966(n,k)*e + T(n,k).

A373966 Triangle read by rows: T(n,k) = (-1)^(n+1) * A000166(n) + (-1)^(k) * A000166(k) for n >= 2 and 1 <= k <= n-1.

Original entry on oeis.org

-1, 2, 3, -9, -8, -11, 44, 45, 42, 53, -265, -264, -267, -256, -309, 1854, 1855, 1852, 1863, 1810, 2119, -14833, -14832, -14835, -14824, -14877, -14568, -16687, 133496, 133497, 133494, 133505, 133452, 133761, 131642, 148329, -1334961, -1334960, -1334963, -1334952, -1335005, -1334696, -1336815, -1320128, -1468457
Offset: 2

Author

Mohammed Yaseen, Jun 24 2024

Keywords

Examples

			Triangle begins:
    -1;
     2,    3;
    -9,   -8,  -11;
    44,   45,   42,   53;
  -265, -264, -267, -256, -309;
  1854, 1855, 1852, 1863, 1810, 2119;
  ...
		

Crossrefs

Unsigned columns: A000166, A000240.
Unsigned diagonals: A000255, A018934.

Programs

  • Mathematica
    T[n_,k_]:= (-1)^(n+1)*Subfactorial[n] + (-1)^k*Subfactorial[k]; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)

Formula

Integral_{1..e} (log(x)^k - log(x)^n) dx = T(n,k)*e + A373967(n,k).

A374170 a(n) is the least nonsquare k such that sigma_n(k) divides sigma_2n(k).

Original entry on oeis.org

20, 20, 6050, 7203
Offset: 1

Author

Mohammed Yaseen, Jun 30 2024

Keywords

Comments

a(1) = A227771(1); a(2) = A046871(5).
a(5) > 10^9 if it exists.
a(6) = 17328, a(7) = 50, a(13) = 761378.

Crossrefs

Programs

  • PARI
    a(n) = my(k=1, f=factor(k)); while (issquare(k) || (sigma(f, 2*n) % sigma(f, n)), f=factor(k++)); k; \\ Michel Marcus, Jun 30 2024

A361683 a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.

Original entry on oeis.org

4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4
Offset: 2

Author

Mohammed Yaseen, Mar 20 2023

Keywords

Comments

a(13) <= 31525197391593472. - David A. Corneth, Mar 20 2023
From Thomas Scheuerle, Mar 22 2023: (Start)
a(17) <= 15211807202738752817960438464512 and a(19) <= 2^190*11.
Conjecture: a(n) is of the form 2^b*p1^c*p2^d*...*pk^j with b > 0 and A020639(n) divides b*(c+1)*(d+1)*...*(j+1). (p1, p2, ..., pk are distinct odd prime numbers). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
  • PARI
    isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f,n) % nd);
    a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, Mar 20 2023

Formula

a(2*m) = 4 for m >= 1.
a(6*m-3) = 64 for m >= 1.
From Thomas Scheuerle, Mar 22 2023: (Start)
a(m) <= a(A020639(m)) if a(A020639(m)) <> -1.
Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)

A359800 a(n) is the least m such that the concatenation of n^2 and m is a square.

Original entry on oeis.org

6, 9, 61, 9, 6, 1, 284, 516, 225, 489, 104, 4, 744, 249, 625, 3201, 444, 9, 201, 689, 4201, 416, 984, 4801, 681, 5201, 316, 996, 5801, 601, 6201, 144, 936, 6801, 449, 7201, 7401, 804, 7801, 225, 8201, 8401, 6, 8801, 9001, 9201, 9401, 324, 9801, 19344, 769, 38025
Offset: 1

Author

Mohammed Yaseen, Jan 13 2023

Keywords

Comments

The only one-digit terms are 1, 4, 6 and 9. Proof: Squares mod 10 are 0, 1, 4, 5, 6 and 9. Concatenation of a square and 0 is 10 times that square, which is not a square. So 0 is ruled out. Squares with last digit 5 have second last digit 2. Since no square ends in 2, 5 is also ruled out.
From Thomas Scheuerle, Jan 14 2023: (Start)
The only term with two digits is a(3) = 61.
Some terms with an odd number of digits appear infinitely often, for example, 516 for n = 8, 1352, 632958674, ... .
If a term has an even number of digits and is of the form 1+2*k*10^(d+1) with 10^d <= 2*k < 10^(d+1), then it appears only once at k = n in this sequence. Are terms with an even number of digits possible which are not of this form? (End)

Examples

			For n=3, 61 is the least number m such that the concatenation of 3^2 and m is a square: 961 = 31^2. So a(3) = 61.
For n=7, 284 is the least number m such that the concatenation of 7^2 and m is a square: 49284 = 222^2. So a(7) = 284.
		

Programs

  • PARI
    a(n)={my(m=n^2, b=1); while(1, m*=10; my(r=(sqrtint(m+b-1)+1)^2-m); b*=10; if(rAndrew Howroyd, Jan 13 2023
  • Python
    from math import isqrt
    def a(n):
        t, k = str(n*n), isqrt(10*n**2)
        while not (s:=str(k*k)).startswith(t) or s[len(t)]=="0": k += 1
        return int(s[len(t):])
    print([a(n) for n in range(1, 53)]) # Michael S. Branicky, Jan 15 2023
    
  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def A359800(n):
        m = 10*n*n
        if is_square(m): return 0
        a = 1
        while (k:=(isqrt(a*(m+1)-1)+1)**2-m*a)>=10*a:
            a *= 10
        return k # Chai Wah Wu, Feb 15 2023
    

Formula

a(n) = A071176(n^2) = A071176(A000290(n)).
From Thomas Scheuerle, Jan 13 2023: (Start)
a(A084070(n)) = 1.
a(2*A084070(n)) = 4.
a(A221874(n)) = 6.
a(A075836(n)) = 9. (End)

A359224 Numbers whose decimal representation is the reverse of their base-7 representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 23, 46, 2116, 15226, 32361
Offset: 1

Author

Mohammed Yaseen, Dec 21 2022

Keywords

Examples

			23 is a term since 23_7 = 32 which reversed is 23.
32361 is a term since 32361_7 = 163230 which reversed is 032361 and the leading 0 is disregarded.
		

Crossrefs

Programs

  • PARI
    isok(n) = fromdigits(Vecrev(digits(n, 7))) == n

Extensions

a(12) from Jon E. Schoenfield, Dec 21 2022

A358340 a(n) is the smallest n-digit number whose fourth power is zeroless.

Original entry on oeis.org

1, 11, 104, 1027, 10267, 102674, 1026708, 10266908, 102669076, 1026690113, 10266901031, 102669009704, 1026690096087, 10266900960914, 102669009608176, 1026690096080369, 10266900960803447, 102669009608034434, 1026690096080341627, 10266900960803409734, 102669009608034097731, 1026690096080340972491
Offset: 1

Author

Mohammed Yaseen, Nov 10 2022

Keywords

Comments

It has been proved that there exist infinitely many zeroless squares and cubes but there is apparently no proof for 4th powers, 5th powers, etc.
This sequence approaches the decimal expansion of 9000^(-1/4). Similar sequences of other small powers k seem to approach the decimal expansion of (9*10^(k-1))^(-1/k).

Programs

  • PARI
    a(n) = my(x=10^(n-1)); while(! vecmin(digits(x^4)), x++); x; \\ Michel Marcus, Nov 10 2022
    
  • PARI
    a(n) = { my(s = sqrtnint(10^(4*n - 3) \ 9, 4)); for(i = s, oo, c = i^4; if(vecmin(digits(c)) > 0, return(i) ) ) } \\ David A. Corneth, Nov 10 2022
  • Python
    from itertools import count
    from sympy import integer_nthroot
    def a(n):
        start = integer_nthroot(int("1"*(4*(n-1)+1)), 4)[0]
        return next(i for i in count(start) if "0" not in str(i**4))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 10 2022
    

Formula

a(n) ~ 10^(n + 1/4) / sqrt(3).

Extensions

More terms from David A. Corneth, Nov 10 2022