Mohammed Yaseen has authored 31 sequences. Here are the ten most recent ones:
A378089
Irregular triangle read by rows in which row n lists the numbers k such that phi(k)/tau(k) = n.
Original entry on oeis.org
1, 3, 8, 10, 18, 24, 30, 5, 9, 15, 28, 40, 72, 84, 90, 120, 7, 21, 26, 56, 70, 78, 108, 126, 168, 210, 34, 45, 52, 102, 140, 156, 252, 360, 420, 11, 33, 88, 110, 198, 264, 330, 13, 35, 39, 63, 76, 104, 105, 130, 228, 234, 280, 312, 390, 504, 540, 630, 840, 58, 98, 174, 294
Offset: 1
Triangle begins:
n=1: 1, 3, 8, 10, 18, 24, 30;
n=2: 5, 9, 15, 28, 40, 72, 84, 90, 120;
n=3: 7, 21, 26, 56, 70, 78, 108, 126, 168, 210;
n=4: 34, 45, 52, 102, 140, 156, 252, 360, 420;
n=5: 11, 33, 88, 110, 198, 264, 330;
n=6: 13, 35, 39, 63, 76, 104, 105, 130, 228, 234, 280, 312, 390, 504, 540, 630, 840;
n=7: 58, 98, 174, 294;
...
A374896
Array read by falling antidiagonals: T(n,k) = denominator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 2, 1, 5, 16, 27, 8, 1, 6, 25, 32, 27, 1, 1, 7, 36, 125, 128, 81, 4, 1, 8, 49, 27, 625, 128, 243, 4, 1, 9, 64, 343, 216, 3125, 512, 243, 16, 1, 10, 81, 256, 2401, 81, 3125, 1024, 729, 1, 1, 11, 100, 729, 2048, 16807, 972, 15625, 4096, 2187, 4, 1
Offset: 0
Array begins:
+-----+-----------------------------------------------+
| n\k | 2 3 4 5 6 7 8 ... |
+-----+-----------------------------------------------+
| 0 | 1 2 3 4 5 6 7 ... |
| 1 | 1 4 9 16 25 36 49 ... |
| 2 | 1 2 27 32 125 27 343 ... |
| 3 | 1 8 27 128 625 216 2401 ... |
| 4 | 1 1 81 128 3125 81 16807 ... |
| 5 | 1 4 243 512 3125 972 117649 ... |
| 6 | 1 4 243 1024 15625 486 823543 ... |
| 7 | 1 16 729 4096 78125 11664 823543 ... |
| 8 | 1 1 2187 2048 390625 2187 5764801 ... |
| ... | ... ... ... ... ... ... ... ... |
+-----+-----------------------------------------------+
-
T(n,k) = denominator(polylog(-n, 1/k));
matrix(7,7,n, k, T(n-1,k+1)) \\ Michel Marcus, Aug 04 2024
A374895
Array read by falling antidiagonals: T(n,k) = numerator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 3, 26, 1, 5, 20, 33, 150, 1, 6, 15, 44, 15, 1082, 1, 7, 42, 115, 380, 273, 9366, 1, 8, 7, 366, 285, 4108, 1491, 94586, 1, 9, 72, 91, 4074, 3535, 17780, 38001, 1091670, 1, 10, 45, 776, 70, 11334, 26355, 269348, 17295, 14174522, 1, 11, 110, 531, 10440, 2149, 189714, 458555, 4663060, 566733, 204495126
Offset: 0
Array begins:
+-----+--------------------------------------------------------------+
| n\k | 2 3 4 5 6 7 8 ... |
+-----+--------------------------------------------------------------+
| 0 | 1 1 1 1 1 1 1 ... |
| 1 | 2 3 4 5 6 7 8 ... |
| 2 | 6 3 20 15 42 7 72 ... |
| 3 | 26 33 44 115 366 91 776 ... |
| 4 | 150 15 380 285 4074 70 10440 ... |
| 5 | 1082 273 4108 3535 11334 2149 174728 ... |
| 6 | 9366 1491 17780 26355 189714 3311 3525192 ... |
| 7 | 94586 38001 269348 458555 3706518 285929 11870648 ... |
| 8 | 1091670 17295 4663060 1139685 82749954 220430 319735800 ... |
| ... | ... ... ... ... ... ... ... ... |
+-----+--------------------------------------------------------------+
-
T(n,k) = numerator(polylog(-n, 1/k));
matrix(7,7,n,k,T(n-1, k+1)) \\ Michel Marcus, Aug 04 2024
A373967
Triangle read by rows: T(n,k) = (-1)^n * n! + (-1)^(k+1) * k! for n >= 2 and 1 <= k <= n-1.
Original entry on oeis.org
3, -5, -8, 25, 22, 30, -119, -122, -114, -144, 721, 718, 726, 696, 840, -5039, -5042, -5034, -5064, -4920, -5760, 40321, 40318, 40326, 40296, 40440, 39600, 45360, -362879, -362882, -362874, -362904, -362760, -363600, -357840, -403200, 3628801, 3628798, 3628806, 3628776, 3628920, 3628080, 3633840, 3588480, 3991680
Offset: 2
Triangle begins:
3;
-5, -8;
25, 22, 30;
-119, -122, -114, -144;
721, 718, 726, 696, 840;
-5039, -5042, -5034, -5064, -4920, -5760;
...
-
T[n_,k_]:= (-1)^n*n! + (-1)^(k+1)*k!; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)
A373966
Triangle read by rows: T(n,k) = (-1)^(n+1) * A000166(n) + (-1)^(k) * A000166(k) for n >= 2 and 1 <= k <= n-1.
Original entry on oeis.org
-1, 2, 3, -9, -8, -11, 44, 45, 42, 53, -265, -264, -267, -256, -309, 1854, 1855, 1852, 1863, 1810, 2119, -14833, -14832, -14835, -14824, -14877, -14568, -16687, 133496, 133497, 133494, 133505, 133452, 133761, 131642, 148329, -1334961, -1334960, -1334963, -1334952, -1335005, -1334696, -1336815, -1320128, -1468457
Offset: 2
Triangle begins:
-1;
2, 3;
-9, -8, -11;
44, 45, 42, 53;
-265, -264, -267, -256, -309;
1854, 1855, 1852, 1863, 1810, 2119;
...
-
T[n_,k_]:= (-1)^(n+1)*Subfactorial[n] + (-1)^k*Subfactorial[k]; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)
A374170
a(n) is the least nonsquare k such that sigma_n(k) divides sigma_2n(k).
Original entry on oeis.org
20, 20, 6050, 7203
Offset: 1
-
a(n) = my(k=1, f=factor(k)); while (issquare(k) || (sigma(f, 2*n) % sigma(f, n)), f=factor(k++)); k; \\ Michel Marcus, Jun 30 2024
A361683
a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.
Original entry on oeis.org
4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4
Offset: 2
-
a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
-
isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f,n) % nd);
a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, Mar 20 2023
A359800
a(n) is the least m such that the concatenation of n^2 and m is a square.
Original entry on oeis.org
6, 9, 61, 9, 6, 1, 284, 516, 225, 489, 104, 4, 744, 249, 625, 3201, 444, 9, 201, 689, 4201, 416, 984, 4801, 681, 5201, 316, 996, 5801, 601, 6201, 144, 936, 6801, 449, 7201, 7401, 804, 7801, 225, 8201, 8401, 6, 8801, 9001, 9201, 9401, 324, 9801, 19344, 769, 38025
Offset: 1
For n=3, 61 is the least number m such that the concatenation of 3^2 and m is a square: 961 = 31^2. So a(3) = 61.
For n=7, 284 is the least number m such that the concatenation of 7^2 and m is a square: 49284 = 222^2. So a(7) = 284.
-
a(n)={my(m=n^2, b=1); while(1, m*=10; my(r=(sqrtint(m+b-1)+1)^2-m); b*=10; if(rAndrew Howroyd, Jan 13 2023
-
from math import isqrt
def a(n):
t, k = str(n*n), isqrt(10*n**2)
while not (s:=str(k*k)).startswith(t) or s[len(t)]=="0": k += 1
return int(s[len(t):])
print([a(n) for n in range(1, 53)]) # Michael S. Branicky, Jan 15 2023
-
from math import isqrt
from sympy.ntheory.primetest import is_square
def A359800(n):
m = 10*n*n
if is_square(m): return 0
a = 1
while (k:=(isqrt(a*(m+1)-1)+1)**2-m*a)>=10*a:
a *= 10
return k # Chai Wah Wu, Feb 15 2023
A359224
Numbers whose decimal representation is the reverse of their base-7 representation.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 23, 46, 2116, 15226, 32361
Offset: 1
23 is a term since 23_7 = 32 which reversed is 23.
32361 is a term since 32361_7 = 163230 which reversed is 032361 and the leading 0 is disregarded.
A358340
a(n) is the smallest n-digit number whose fourth power is zeroless.
Original entry on oeis.org
1, 11, 104, 1027, 10267, 102674, 1026708, 10266908, 102669076, 1026690113, 10266901031, 102669009704, 1026690096087, 10266900960914, 102669009608176, 1026690096080369, 10266900960803447, 102669009608034434, 1026690096080341627, 10266900960803409734, 102669009608034097731, 1026690096080340972491
Offset: 1
-
a(n) = my(x=10^(n-1)); while(! vecmin(digits(x^4)), x++); x; \\ Michel Marcus, Nov 10 2022
-
a(n) = { my(s = sqrtnint(10^(4*n - 3) \ 9, 4)); for(i = s, oo, c = i^4; if(vecmin(digits(c)) > 0, return(i) ) ) } \\ David A. Corneth, Nov 10 2022
-
from itertools import count
from sympy import integer_nthroot
def a(n):
start = integer_nthroot(int("1"*(4*(n-1)+1)), 4)[0]
return next(i for i in count(start) if "0" not in str(i**4))
print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 10 2022
Comments