A374895 Array read by falling antidiagonals: T(n,k) = numerator(Sum_{x>0} (x^n)/(k^x)); n >= 0 and k >= 2.
1, 1, 2, 1, 3, 6, 1, 4, 3, 26, 1, 5, 20, 33, 150, 1, 6, 15, 44, 15, 1082, 1, 7, 42, 115, 380, 273, 9366, 1, 8, 7, 366, 285, 4108, 1491, 94586, 1, 9, 72, 91, 4074, 3535, 17780, 38001, 1091670, 1, 10, 45, 776, 70, 11334, 26355, 269348, 17295, 14174522, 1, 11, 110, 531, 10440, 2149, 189714, 458555, 4663060, 566733, 204495126
Offset: 0
Examples
Array begins: +-----+--------------------------------------------------------------+ | n\k | 2 3 4 5 6 7 8 ... | +-----+--------------------------------------------------------------+ | 0 | 1 1 1 1 1 1 1 ... | | 1 | 2 3 4 5 6 7 8 ... | | 2 | 6 3 20 15 42 7 72 ... | | 3 | 26 33 44 115 366 91 776 ... | | 4 | 150 15 380 285 4074 70 10440 ... | | 5 | 1082 273 4108 3535 11334 2149 174728 ... | | 6 | 9366 1491 17780 26355 189714 3311 3525192 ... | | 7 | 94586 38001 269348 458555 3706518 285929 11870648 ... | | 8 | 1091670 17295 4663060 1139685 82749954 220430 319735800 ... | | ... | ... ... ... ... ... ... ... ... | +-----+--------------------------------------------------------------+
Programs
-
PARI
T(n,k) = numerator(polylog(-n, 1/k)); matrix(7,7,n,k,T(n-1, k+1)) \\ Michel Marcus, Aug 04 2024