A375492 Number of compositions of n into powers of two that each divide the sum of previous powers.
1, 1, 2, 2, 5, 5, 10, 10, 26, 26, 52, 52, 130, 130, 260, 260, 677, 677, 1354, 1354, 3385, 3385, 6770, 6770, 17602, 17602, 35204, 35204, 88010, 88010, 176020, 176020, 458330, 458330, 916660, 916660, 2291650, 2291650, 4583300, 4583300, 11916580, 11916580
Offset: 0
Keywords
Examples
For n = 4 the a(4) = 5 compositions are 1+1+1+1, 1+1+2, 2+1+1, 2+2, and 4. The composition 1+2+1 is not allowed, because 2 does not divide the sum of previous terms.
Formula
Let p be the largest power of two less than n; then a(n) = a(p)a(n-p) if n is not a power of two, or a(n) = a(p)^2 + 1 if n is a power of two.
Comments