Original entry on oeis.org
3, 21, 903, 1631721, 5325028475403, 56711856527710922180500221, 82753323662259982099234097722219590008756576353188748920925694383267934319786203404455994065868822592721
Offset: 1
A000058
Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.
Original entry on oeis.org
2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0
a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
- Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
- Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
- Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
- Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..12
- David Adjiashvili, Sandro Bosio and Robert Weismantel, Dynamic Combinatorial Optimization: a complexity and approximability study, 2012.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
- Gennady Bachman and Troy Kessler, On divisibility properties of certain multinomial coefficients—II, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 1-12.
- Andreas Bäuerle, Sharp volume and multiplicity bounds for Fano simplices, arXiv:2308.12719 [math.CO], 2023.
- Kevin S. Brown, Odd, Greedy and Stubborn (Unit Fractions).
- Eunice Y. S. Chan and Robert M. Corless, Minimal Height Companion Matrices for Euclid Polynomials, Mathematics in Computer Science, Vol. 13, No. 1-2 (2019), pp. 41-56, arXiv preprint, arXiv:1712.04405 [math.NA], 2017.
- Hung Viet Chu, A Threshold for the Best Two-term Underapproximation by the Greedy Algorithm, arXiv:2306.12564 [math.NT], 2023.
- Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
- D. R. Curtiss, On Kellogg's Diophantine problem, Amer. Math. Monthly, Vol. 29, No. 10 (1922), pp. 380-387.
- Mehran Derakhshandeh, Why do Sylvester numbers, when reduced modulo 864, form an arithmetic progression 7,43,79,115,151,187,223,...?
- Paul Erdős and E. G. Straus, On the Irrationality of Certain Ahmes Series, J. Indian Math. Soc. (N.S.), 27(1964), pp. 129-133.
- Steven Finch, Exercises in Iterational Asymptotics, arXiv:2411.16062 [math.NT], 2024. See p. 10.
- Solomon W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math., 15 (1963), 475-478.
- Solomon W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
- Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
- János Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756 [math.AG], 2008.
- E. Lemoine, Sur la décomposition d'un nombre en ses carrés maxima, Assoc. Française pour L'Avancement des Sciences (1896), 73-77.
- Zheng Li and Quanyu Tang, On a conjecture of Erdős and Graham about the Sylvester's sequence, arXiv:2503.12277 [math.NT], 2025. See p. 2.
- Nick Lord, A uniform construction of some infinite coprime sequences, The Mathematical Gazette, vol. 92, no. 523, March 2008, pp.66-70.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- Melvyn B. Nathanson, Underapproximation by Egyptian fractions, arXiv:2202.00191 [math.NT], 2022.
- Benjamin Nill, Volume and lattice points of reflexive simplices, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320, arXiv preprint, arXiv:math/0412480 [math.AG], 2004-2007.
- R. W. K. Odoni, On the prime divisors of the sequence w_{n+1}=1+w_1 ... w_n, J. London Math. Soc. 32 (1985), 1-11.
- Michael Penn, An intriguing integer sequence — Sylvester’s Sequence, YouTube video (2022).
- Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 5. [?Broken link]
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 5.
- Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Vol. 113, No. 10 (Dec., 2006), pp. 937-938.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240, arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
- J. J. Sylvester, On a Point in the Theory of Vulgar Fractions, Amer. J. Math., Vol. 3, No. 4 (1880), pp. 332-335.
- Burt Totaro, The ACC conjecture for log canonical thresholds, Séminaire Bourbaki no. 1025 (juin 2010).
- Burt Totaro and Chengxi Wang, Varieties of general type with small volume, arXiv:2104.12200 [math.AG], 2021.
- Akiyoshi Tsuchiya, The delta-vectors of reflexive polytopes and of the dual polytopes, Discrete Mathematics, Vol. 339, No. 10 (2016), pp. 2450-2456, arXiv preprint, arXiv:1411.2122 [math.CO], 2014-2016.
- Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
- Eric Weisstein's World of Mathematics, Sylvester's Sequence.
- Wikipedia, Sylvester's sequence.
- Bowen Yao, A note on fraction decompositions of integers, The American Mathematical Monthly, 127(10), 928-932, Dec 2020.
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
- Index entries for "core" sequences.
Cf.
A005267,
A000945,
A000946,
A005265,
A005266,
A075442,
A007018,
A014117,
A054377,
A002061,
A118227,
A126263,
A007996 (primes dividing some term),
A323605 (smallest prime divisors),
A091335 (number of prime divisors),
A129871 (a variant starting with 1).
-
a000058 0 = 2
a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
-- James Spahlinger, Oct 09 2012
-
a000058_list = iterate a002061 2 -- Reinhard Zumkeller, Dec 18 2013
-
a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
[a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
-
A[0]:= 2:
for n from 1 to 12 do
A[n]:= A[n-1]^2 - A[n-1]+1
od:
seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
-
a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
-
a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
-
a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
-
A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
-
a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
-
A000058 = [2]
for n in range(1, 10):
A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
# Chai Wah Wu, Aug 20 2014
A174954
a(1)=1 and a(2)=2, a(n) = square of the sum of previous terms.
Original entry on oeis.org
1, 2, 9, 144, 24336, 599858064, 359859080993093136, 129498558604939936508538275302878864
Offset: 1
A269265
a(0) = a(1) = 1; thereafter a(n) = a(n-1) + a(n-2) if n is even, otherwise a(n) = a(n-1)^2.
Original entry on oeis.org
1, 1, 2, 4, 6, 36, 42, 1764, 1806, 3261636, 3263442, 10650053687364, 10650056950806, 113423713055411194304049636, 113423713055421844361000442, 12864938683278671740537145884937248491231415124195364, 12864938683278671740537145998360961546653259485195806
Offset: 0
-
[n le 2 select 1 else IsEven(n) select Self(n-1)^2 else Self(n-1)+Self(n-2): n in [1..20]];
-
a[n_] := If[OddQ@n, a[n - 1] + a[n - 2], a[n - 1]^2]; a[0] = 1; Array[a, 17]
Showing 1-4 of 4 results.
Comments