cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Christian Schulz

Christian Schulz's wiki page.

Christian Schulz has authored 1 sequences.

A216188 Number of unordered pairs of anagrammatic (positive) integers adding to n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Author

Christian Schulz, Mar 11 2013

Keywords

Comments

Two positive integers are here defined as "anagrammatic" if (in base 10) they have the same number of 0 digits, 1 digits, 2 digits, ..., 9 digits. Thus, 123 and 231 are anagrammatic, but not 301 and 013, as leading zeros are omitted.

Examples

			For n = 88, the a(88) = 4 pairs are {17,71}, {26,62}, {35,53}, and {44,44}. For n = 609, the a(609) = 1 pair is {237,372}.
		

Programs

  • Maple
    getDigit := (n,k) -> floor(n/10^k) mod 10; getMaxDigit := n -> floor(log10(n)) + 1; getDigitMultiset := n -> convert([seq(getDigit(n,k),k=0..getMaxDigit(n)-1)],multiset); isAnagram := (m,n) -> evalb(getDigitMultiset(m) = getDigitMultiset(n)); A216188 := n -> convert([seq(eval(isAnagram(k,n-k),[true=1,false=0]),k=1..floor(n/2))],`+`); seq(A216188(n),n=1..50)
  • Mathematica
    IsAnagram[x_, y_, b_: 10] := Sort[Permutations[IntegerDigits[x, b]]] == Sort[Permutations[IntegerDigits[y, b]]]; FindAnagramSums[n_, b_: 10] := Select[Table[{k, n - k}, {k, 0, Floor[n/2]}], IsAnagram[#[[1]], #[[2]], b] &]; Table[Length[FindAnagramSums[n]], {n, 1, 200}]