cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A004207 a(0) = 1, a(n) = sum of digits of all previous terms.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538
Offset: 0

Views

Author

Keywords

Comments

If the leading 1 is omitted, this is the important sequence b(1)=1, for n >= 2, b(n) = b(n-1) + sum of digits of b(n-1). Cf. A016052, A016096, etc. - N. J. A. Sloane, Dec 01 2013
Same digital roots as A065075 (Sum of digits of the sum of the preceding numbers) and A001370 (Sum of digits of 2^n); they end in the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
More precisely, mod 9 this sequence is 1 (1 2 4 8 7 5)*, the parenthesized part being repeated indefinitely. This shows that this sequence is disjoint from A016052. - N. J. A. Sloane, Oct 15 2013
There are infinitely many even terms (Belov 2003).
a(n) = A007618(n-5) for n > 57; a(n) = A006507(n-4) for n > 15. - Reinhard Zumkeller, Oct 14 2013

References

  • N. Agronomof, Problem 4421, L'Intermédiaire des mathématiciens, v. 21 (1914), p. 147.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. E. Stevens and L. G. Hunsberger, A Result and a Conjecture on Digit Sum Sequences, J. Recreational Math. 27, no. 4 (1995), pp. 285-288.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 37.

Crossrefs

For the base-2 analog see A010062.
A065075 gives sum of digits of a(n).
See A219675 for an essentially identical sequence.

Programs

  • Haskell
    a004207 n = a004207_list !! n
    a004207_list = 1 : iterate a062028 1
    -- Reinhard Zumkeller, Oct 14 2013, Sep 12 2011
    
  • Maple
    read("transforms") :
    A004207 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add( digsum(procname(i)),i=0..n-1) ;
        end if;
    end proc: # R. J. Mathar, Apr 02 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1, (t->
         t+add(i, i=convert(t, base, 10)))(a(n-1)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 31 2022
  • Mathematica
    f[s_] := Append[s, Plus @@ Flatten[IntegerDigits /@ s]]; Nest[f, {1}, 55] (* Robert G. Wilson v, May 26 2006 *)
    f[n_] := n + Plus @@ IntegerDigits@n; Join[{1}, NestList[f, 1, 80]] (* Alonso del Arte, May 27 2006 *)
  • PARI
    a(n) = { my(f(d, i) = d+vecsum(digits(d)), S=vector(n)); S[1]=1; for(k=1, n-1, S[k+1] = fold(f, S[1..k])); S } \\ Satish Bysany, Mar 03 2017
    
  • PARI
    a = 1; print1(a, ", "); for(i = 1, 50, print1(a, ", "); a = a + sumdigits(a)); \\ Nile Nepenthe Wynar, Feb 10 2018
    
  • Python
    from itertools import islice
    def agen():
        yield 1; an = 1
        while True: yield an; an += sum(map(int, str(an)))
    print(list(islice(agen(), 54))) # Michael S. Branicky, Jul 31 2022

Formula

For n>1, a(n) = a(n-1) + sum of digits of a(n-1).
For n > 1: a(n) = A062028(a(n-1)). - Reinhard Zumkeller, Oct 14 2013

Extensions

Errors from 25th term on corrected by Leonid Broukhis, Mar 15 1996
Typo in definition fixed by Reinhard Zumkeller, Sep 14 2011

A047235 Numbers that are congruent to {2, 4} mod 6.

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196, 200, 202, 206
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 19 ).
Complement of A047273; A093719(a(n)) = 0. - Reinhard Zumkeller, Oct 01 2008
One could prefix an initial term "1" (or not) and define this sequence through a(n+1) = a(n) + (a(n) mod 6). See A001651 for the analog with 3, A235700 (with 5), A047350 (with 7), A007612 (with 9) and A102039 (with 10). Using 4 or 8 yields a constant sequence from that term on. - M. F. Hasler, Jan 14 2014
Nonnegative m such that m^2/6 + 1/3 is an integer. - Bruno Berselli, Apr 13 2017
Numbers divisible by 2 but not by 3. - David James Sycamore, Apr 04 2018
Numbers k for which A276086(k) is of the form 6m+3. - Antti Karttunen, Dec 03 2022

Crossrefs

Cf. A020760, A020832, A093719, A047273 (complement), A120325 (characteristic function).
Equals 2*A001651.
Cf. A007310 ((6*n+(-1)^n-3)/2). - Bruno Berselli, Jun 24 2010
Positions of 3's in A053669 and in A358840.

Programs

  • Magma
    [ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..70] ]; // Klaus Brockhaus, Dec 13 2008
    
  • Maple
    seq(6*floor((n+1)/2) + 3 + (-1)^n, n=1..67); # Gary Detlefs, Mar 02 2010
  • Mathematica
    Flatten[Table[{6n - 4, 6n - 2}, {n, 40}]] (* Alonso del Arte, Oct 27 2014 *)
  • PARI
    a(n)=(n-1)\2*6+3+(-1)^n \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    first(n) = my(v = vector(n, i, 3*i - 1)); forstep(i = 2, n, 2, v[i]--); v \\ David A. Corneth, Oct 20 2017

Formula

a(n) = 2*A001651(n).
n such that phi(3*n) = phi(2*n). - Benoit Cloitre, Aug 06 2003
G.f.: 2*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). a(n) = 3*n - 3/2 - (-1)^n/2. - R. J. Mathar, Nov 22 2008
a(n) = 3*n + 5..n odd, 3*n + 4..n even a(n) = 6*floor((n+1)/2) + 3 + (-1)^n. - Gary Detlefs, Mar 02 2010
a(n) = 6*n - a(n-1) - 6 (with a(1) = 2). - Vincenzo Librandi, Aug 05 2010
a(n+1) = a(n) + (a(n) mod 6). - M. F. Hasler, Jan 14 2014
Sum_{n>=1} 1/a(n)^2 = Pi^2/27. - Dimitris Valianatos, Oct 10 2017
a(n) = (6*n - (-1)^n - 3)/2. - Ammar Khatab, Aug 23 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)). - Amiram Eldar, Dec 11 2021
E.g.f.: 2 + ((6*x - 3)*exp(x) - exp(-x))/2. - David Lovler, Aug 25 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2/sqrt(3) (10 * A020832).
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/sqrt(3) (A020760). (End)

A029898 Pitoun's sequence: a(n+1) is digital root of a(0) + ... + a(n).

Original entry on oeis.org

1, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2
Offset: 0

Views

Author

Amela2(AT)aol.com

Keywords

Comments

If the initial 1 is omitted, this is 2^n mod 9. - N. J. A. Sloane
From Cino Hilliard, Dec 31 2004: (Start)
Except for the initial term, also the digital root of 11^n.
Except for the initial term, also the decimal expansion of 125/1001.
Except for the initial term, also the digital root of 2^n. (End)
Aside from the first term, periodic with period 6. - Charles R Greathouse IV, Nov 29 2011

Examples

			1 + 1 + 2 + 4 + 8 + 7 + 5 = 28 -> 2 + 8 = 10 -> a(7) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PowerMod[2, n-1, 9]; a[0] = 1; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 29 2011 *)
    Join[{1},LinearRecurrence[{1,0,-1,1},{1,2,4,8},110]] (* or *) Join[{1}, PowerMod[2,Range[110],9]] (* Harvey P. Dale, Nov 24 2014 *)
  • PARI
    a(n)=if(n,[5,1,2,4,8,7][n%6+1],1) \\ Charles R Greathouse IV, Nov 29 2011
  • Sage
    [power_mod(2,n,9)for n in range(0, 105)] # Zerinvary Lajos, Nov 03 2009
    

Formula

a(n) = digital root of 2^(n-1) in base 10 = 2^(n-1) (mod 9). - Olivier Gérard, Jun 06 2001
For n > 0: a(n+6) = a(n) and a(n) = A007612(n+1) - A007612(n) = A010888(A007612(n)). - Reinhard Zumkeller, Feb 27 2006
a(n) = (9 + cos(n*Pi) - 4*sqrt(3)*sin(n*Pi/3))/2 for n > 0 with a(0)=1. - Wesley Ivan Hurt, Oct 04 2018
From Stefano Spezia, Jun 27 2022: (Start)
O.g.f.: (1 + x^2 + 3*x^3 + 4*x^4)/((1 - x)*(1 + x)*(1 - x + x^2)).
E.g.f.: 5*cosh(x) - 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) + 4*(sinh(x) - 1). (End)

Extensions

More terms from Cino Hilliard, Dec 31 2004

A010077 a(n) = sum of digits of a(n-1) + sum of digits of a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 10) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fibonacci(n) = A000045(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) = A007887(n). Thus (a(n) mod 9) is periodic with the Pisano period A001175(9)=24. - Hieronymus Fischer, Jun 27 2007
a(n) == A004090(n) (mod 9) (A004090(n) = digital sum of Fibonacci(n)). - Hieronymus Fischer, Jun 27 2007
For general bases p > 2, we have the inequality 2 <= a(n) <= 2p-3 (for n > 2). Actually, a(n) <= 17 = A131319(10) for the base p=10. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 1] ]] + Apply[ Plus, IntegerDigits[ a[n - 2] ]]; Table[ a[n], {n, 0, 100} ]
    nxt[{a_,b_}]:={b, Total[IntegerDigits[a]]+Total[IntegerDigits[b]]}; NestList[ nxt,{0,1},80][[All,1]] (* Harvey P. Dale, Apr 15 2018 *)
  • PARI
    first(n) = {n = max(n, 2); my(res = vector(n)); res[2] = 1; for(i = 3, n, res[i] = sumdigits(res[i-1]) + sumdigits(res[i-2]) ); res } \\ David A. Corneth, May 26 2021

Formula

Periodic from n=3 with period 24. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = A030132(n-4) + A030132(n-3) for n>3. - Reinhard Zumkeller, Jul 04 2007
a(n) = a(n-1) + a(n-2) - 9*(floor(a(n-1)/10) + floor(a(n-2)/10)). - Hieronymus Fischer, Jun 27 2007
a(n) = floor(a(n-1)/10) + floor(a(n-2)/10) + (a(n-1) mod 10) + (a(n-2) mod 10). - Hieronymus Fischer, Jun 27 2007
a(n) = A059995(a(n-1)) + A059995(a(n-2)) + A010879(a(n-1)) + A010879(a(n-2)). - Hieronymus Fischer, Jun 27 2007
a(n) = Fibonacci(n) - 9*Sum_{k=2..n-1} Fibonacci(n-k+1)*floor(a(k)/10) where Fibonacci(n) = A000045(n). - Hieronymus Fischer, Jun 27 2007

A102039 a(n) = a(n-1) + last digit of a(n-1), starting at 1.

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 24, 28, 36, 42, 44, 48, 56, 62, 64, 68, 76, 82, 84, 88, 96, 102, 104, 108, 116, 122, 124, 128, 136, 142, 144, 148, 156, 162, 164, 168, 176, 182, 184, 188, 196, 202, 204, 208, 216, 222, 224, 228, 236, 242, 244, 248, 256, 262, 264, 268, 276, 282
Offset: 1

Views

Author

Samantha Stones (devilsdaughter2000(AT)hotmail.com), Dec 25 2004

Keywords

Comments

Sequence A001651 is the "base 3" version. In base 4 this rule leads to (1,2,4,4,4...), in base 5 to (1,2,4,8,11,12,14,18,21,22,24,28...) = A235700. - M. F. Hasler, Jan 14 2014
This and the following sequences (none of which is "base"!) could all be defined by a(1) = 1 and a(n+1) = a(n) + (a(n) mod b) with different values of b: A001651 (b=3), A235700 (b=5), A047235 (b=6), A047350 (b=7), A007612 (b=9). Using b=4 or b=8 yields a constant sequence from that term on. - M. F. Hasler, Jan 15 2014

Examples

			28 + 8 = 36, 36 + 6 = 42.
		

Crossrefs

Apart from initial term, same as A002081.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,2,-1},{1,2,4,8,16},60] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    print1(a=1);for(i=1,99,print1(","a+=a%10)) \\ M. F. Hasler, Jan 14 2014
    
  • PARI
    Vec(x*(5*x^4+2*x^3+2*x^2+1)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Colin Barker, Sep 20 2014
    
  • PARI
    a(n) = if(n==1, 1, (-10-(1-I/2)*(-I)^n-(1+I/2)*I^n+5*n)) \\ Colin Barker, Oct 18 2015

Formula

a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>5. G.f.: x*(5*x^4+2*x^3+2*x^2+1) / ((x-1)^2*(x^2+1)). - Colin Barker, Sep 20 2014
a(n) = (-10 - (1-i/2)*(-i)^n - (1+i/2)*i^n + 5*n) for n>1, where i = sqrt(-1). - Colin Barker, Oct 18 2015

A065076 a(0) = 0, a(1) = 1, a(n) = (sum of digits of a(n-1)) + a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 16, 19, 26, 27, 35, 35, 43, 42, 49, 55, 59, 69, 74, 80, 82, 90, 91, 100, 92, 111, 95, 125, 103, 129, 115, 136, 125, 144, 134, 152, 142, 159, 157, 172, 167, 186, 182, 197, 199, 216, 208, 226, 218, 237, 230, 242, 238, 255, 250, 262, 260, 270
Offset: 0

Views

Author

Bodo Zinser, Nov 09 2001

Keywords

Examples

			a(8) = 12 because a(7) = 13, a(6) = 8 and 4 = 1+3 and 12 = 4 + 8.
		

Crossrefs

Cf. A007953 and A007612.
Cf. A030132.

Programs

  • Haskell
    a065076 n = a065076_list !! n
    a065076_list = 0 : 1 : zipWith (+)
                    a065076_list (map a007953 $ tail a065076_list)
    -- Reinhard Zumkeller, Nov 13 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 1] ]] + a[n - 2]; Table[ a[n], {n, 0, 100} ]
    Transpose[NestList[{Last[#],Total[IntegerDigits[Last[#]]]+First[#]}&, {0,1}, 60]][[1]] (* Harvey P. Dale, Dec 07 2011 *)
  • PARI
    { my(a,a1,a2); for (n=0, 60, if (n>1, a=sumdigits(a1) + a2; a2=a1; a1=a, if (n, a=a1=1, a=a2=0)); print1(a, ", ") ) } \\ Harry J. Smith, Oct 06 2009
    

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Nov 13 2001

A235700 a(n+1) = a(n) + (a(n) mod 5), a(1)=1.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 18, 21, 22, 24, 28, 31, 32, 34, 38, 41, 42, 44, 48, 51, 52, 54, 58, 61, 62, 64, 68, 71, 72, 74, 78, 81, 82, 84, 88, 91, 92, 94, 98, 101, 102, 104, 108, 111, 112, 114, 118, 121, 122, 124, 128, 131, 132, 134, 138, 141, 142, 144, 148, 151, 152, 154, 158, 161, 162, 164, 168, 171, 172, 174, 178, 181, 182, 184, 188, 191
Offset: 1

Views

Author

M. F. Hasler, Jan 14 2014

Keywords

Comments

Although the present sequence has not been thought of via "writing a(n) in base b", this could be seen as "base 5" version of A102039 (base 10) and A001651 (base 3), A047235 (base 6), A047350 (base 7) and A007612 (base 9). For 4 or 8 one would get a sequence constant from that (3rd resp. 4th) term on.

Crossrefs

Programs

  • Mathematica
    NestList[#+Mod[#,5]&,1,80] (* Harvey P. Dale, Oct 20 2024 *)
  • PARI
    is_A235700(n) = bittest(278,n%10) \\ 278=2^1+2^2+2^4+2^8
    
  • PARI
    A235700 = n -> 2^((n-1)%4)+(n-1)\4*10
    
  • PARI
    print1(a=1);for(i=1,99,print1(","a+=a%5))
    
  • PARI
    Vec(x*(2*x^3+2*x^2+1)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Colin Barker, Jan 16 2014

Formula

a(n) = 2^(n-1 mod 4) + 10*floor((n-1)/4).
From Colin Barker, Jan 16 2014: (Start)
a(n) = (-10+(1+2*i)*(-i)^n+(1-2*i)*i^n+10*n)/4 where i=sqrt(-1).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4).
G.f.: x*(2*x^3+2*x^2+1) / ((x-1)^2*(x^2+1)). (End)
E.g.f.: (4 + 5*exp(x)*(x - 1) + cos(x) + 2*sin(x))/2. - Stefano Spezia, Feb 22 2025

A065124 a(n) = (sum of digits of a(n-2)) + a(n-1); a(0) = 0 and a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 25, 28, 35, 45, 53, 62, 70, 78, 85, 100, 113, 114, 119, 125, 136, 144, 154, 163, 173, 183, 194, 206, 220, 228, 232, 244, 251, 261, 269, 278, 295, 312, 328, 334, 347, 357, 371, 386, 397, 414, 433, 442, 452, 462, 473, 485, 499, 516
Offset: 0

Views

Author

Robert G. Wilson v, Nov 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 2] ]] + a[n - 1]; Table[ a[n], {n, 0, 100} ]
  • PARI
    { for (n=0, 1000, if (n>1, a=sumdigits(a2) + a1; a2=a1; a1=a, if (n, a=a1=1, a=a2=0)); write("b065124.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 10 2009

Formula

A010888(a(n)) = A030132(n). - Davide Rotondo, Dec 02 2024

A229527 Start with 1, skip (sum of digits of n) numbers, accept next number.

Original entry on oeis.org

1, 3, 7, 15, 22, 27, 37, 48, 61, 69, 85, 99, 118, 129, 142, 150, 157, 171, 181, 192, 205, 213, 220, 225, 235, 246, 259, 276, 292, 306, 316, 327, 340, 348, 364, 378, 397, 417, 430, 438, 454, 468, 487, 507, 520, 528, 544, 558, 577, 597
Offset: 1

Views

Author

Dave Durgin, Sep 25 2013

Keywords

Examples

			a(1)=1, a(2)=1+1+1=3, a(3)=3+3+1=7, a(4)=7+7+1=15, a(5)=15+1+5+1=22, a(6)=22+2+2+1=27, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n - 1] + 1 + Plus @@ IntegerDigits@a[n - 1]; a[1] = 1; Array[a, 50] (* Robert G. Wilson v, Aug 01 2018 *)
  • Python
    from itertools import islice
    def A229527_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a += sum(map(int,str(a)))+1
    A229527_list = list(islice(A229527_gen(),40)) # Chai Wah Wu, Aug 09 2025

Formula

a(n+1) = a(n) + (sum of digits of a(n)) + 1.

A176718 Partial sums of A004207.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 55, 83, 121, 170, 232, 302, 379, 470, 571, 674, 781, 896, 1018, 1145, 1282, 1430, 1591, 1760, 1945, 2144, 2362, 2591, 2833, 3083, 3340, 3611, 3892, 4184, 4489, 4802, 5122, 5447, 5782, 6128, 6487, 6863, 7255, 7661, 8077, 8504, 8944, 9392
Offset: 0

Views

Author

Jonathan Vos Post, Apr 25 2010

Keywords

Comments

Partial sums of a(1) = 1, a(n) = sum of digits of all previous terms. The subsequence of primes in this sequence begins: 2, 83, 379, 571, 2591, 2833, 3083, 6863, 10831. The subsequence of squares in this sequence begins: 1, 4, 16, 121, 4489.

Examples

			a(7) = 1 + 1 + 2 + 4 + 8 + 16 + 23 + 28 = 83 is prime.
		

Crossrefs

Programs

Formula

a(n) = SUM[i=0..n] A004207(i) = SUM[i=0..n] {b(1) = 1, b(j) = sum of digits of b(j) for j = 0..i} = SUM[i=0..n] {b(1) = 1, b(k) = A007953(b(k)) for k = 0..i}.
Showing 1-10 of 11 results. Next