cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bodo Zinser

Bodo Zinser's wiki page.

Bodo Zinser has authored 31 sequences. Here are the ten most recent ones:

A290187 Minimum number of moves to rearrange a Tower of Hanoi puzzle with 3 colors. There are 3 rods with n discs in descending sizes. On the first rod there are n red discs, on the 2nd n blue discs and on the 3rd n white ones.

Original entry on oeis.org

5, 23, 68, 168, 377, 801, 1657, 3377, 6825, 13729, 27545, 55185
Offset: 1

Author

Bodo Zinser, Jul 23 2017

Keywords

Comments

Like the known Tower of Hanoi you have 3 rods with n discs in descending sizes. But here on the first rod there are n red discs, on the 2nd n blue discs and on the 3rd n white ones.
The task is to rearrange the discs so that red ones go to rod 2, the blue ones to rod 3 and the white ones to rod 1. Sequence lists the number of minimum moves needed to rearrange the discs.
I have written a program to find the minimum moves, it might be improved for higher values.

Examples

			For n=1 the moves are 23-12-32-31-23 (meaning to move a disc from rod 2 to 3, then 1 to 2, ...).
For n=2 the moves are 31-21-23-13-13-13-12-31-31-31-32-12-12-12-31-21-21-21-23-13-13-12-31.
		

Crossrefs

Cf. A000225, A055622 (another 3-color variant of the Towers of Hanoi).

A182478 Numbers that can be truncated in base 10 such that the sum of the factorials of the truncations equals that number.

Original entry on oeis.org

1, 2, 145, 40585, 6402374184741226, 121645100891988866, 121666023198802103, 121666023198802144, 2432902008177819519, 2432902008217006118, 2432902008656812499, 4872206390059820318
Offset: 1

Author

Bodo Zinser, May 01 2012

Keywords

Examples

			a(5)=6402374184741226=6!+4!+(02)!+3!+7!+4!+18!+4!+7!+4!+12!+2!+6!
a(6): 2-digit-truncations are 12,10,19
a(7): 2-digit-truncs are 16,19
a(8): 2-digit-truncs are 16,19
a(9): 2-digit-trunc is 20
a(10): 2-digit-truncs are 20,11
a(11): 2-digit-truncs are 20,12
a(12): 2-digit-truncs are 20,20,18
		

Crossrefs

A014080 is a subsequence.

A104113 Numbers which when chopped into one, two or more parts, added and squared result in the same number.

Original entry on oeis.org

0, 1, 81, 100, 1296, 2025, 3025, 6724, 8281, 9801, 10000, 55225, 88209, 136161, 136900, 143641, 171396, 431649, 455625, 494209, 571536, 627264, 826281, 842724, 893025, 929296, 980100, 982081, 998001, 1000000, 1679616, 2896804, 3175524, 4941729, 7441984
Offset: 1

Author

Bodo Zinser, Mar 05 2005

Keywords

Comments

Every term is congruent to 0 or 1 modulo 9. - Andrea Tarantini, Sep 27 2021

Examples

			1296 is a term since (1+29+6)^2 = 36^2 = 1296.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Select[Range@3000^2,Mod[#,9]<2&],(n=#;MemberQ[(Total/@(FromDigits/@#&/@Union[DeleteCases[SplitBy[#,#==-1&],{-1}]&/@(Insert[IntegerDigits@n,-1,#]&/@(List/@#&/@Rest@Subsets[Range@IntegerLength@n]))]))^2,#])&]] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • Python
    def expr(t, d): # can you express target t with digits d, only adding +'s
        if t < 0: return False
        if t == int(d): return True
        return any(expr(t-int(d[:i]), d[i:]) for i in range(1, len(d)))
    def aupto(limit):
        alst, k, k2 = [], 0, 0
        while k2 <= limit:
            if expr(k, str(k2)):
                alst.append(k2)
            k, k2 = k+1, k2 + 2*k + 1
        return alst
    print(aupto(7500000)) # Michael S. Branicky, Sep 27 2021

Formula

a(n) = A038206(n)^2. - Andrea Tarantini, Sep 27 2021

Extensions

a(30) and beyond from Mehrad Mahmoudian, Dec 16 2019

A102762 Curvatures of (largest) kissing circles along the circumference, starting with curvature = -1 and 2.

Original entry on oeis.org

-1, 2, 2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603, 2706, 2811, 2918, 3027, 3138, 3251, 3366
Offset: 0

Author

Bodo Zinser, Feb 10 2005

Keywords

Comments

A059100 has a totally different description but is the same sequence (omitting the first two numbers here)

Crossrefs

Programs

  • PARI
    a(n) = if(n>1, n^2 - 4*n + 6, [-1,2][n+1]) \\ Andrew Howroyd, Feb 25 2018

Formula

a(n) = a(1) + a(2) + a(n-1) + 2*sqrt(a(1)*a(2) + a(1)*a(n-1) + a(2)*a(n-1)) = 1 + a(n-1) + 2*(sqrt(-2 + a(n-1))). (Descartes' curvature-theorem)
From Colin Barker, Jan 07 2013: (Start)
a(n) = n^2 - 4*n + 6 for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: -(x^4 + 4*x^3 - 7*x^2 + 5*x - 1)/(x - 1)^3.
(End)

A102766 Numbers n that can be chopped into two parts, which when added and squared result in n.

Original entry on oeis.org

1, 81, 100, 2025, 3025, 9801, 10000, 88209, 494209, 998001, 1000000, 4941729, 7441984, 23804641, 24502500, 25502500, 28005264, 52881984, 60481729, 99980001, 100000000, 300814336, 493817284, 1518037444, 6049417284, 6832014336, 9048004641, 9999800001, 10000000000
Offset: 1

Author

Bodo Zinser, Feb 10 2005

Keywords

Examples

			a(7) = 88209 is a term as (88+209)^2 = 297^2 = 88209.
		

Crossrefs

Supersequence of A238237.

Programs

  • Python
    from math import isqrt
    from itertools import count, islice
    def ok(n):
        if n == 1: return True
        r = isqrt(n)
        if r**2 != n: return False
        s = str(n)
        return any(int(s[:i])+int(s[i:])== r for i in range(1, len(s)))
    def agen(): yield from (k**2 for k in count(1) if ok(k**2))
    print(list(islice(agen(), 29))) # Michael S. Branicky, Dec 29 2024

Formula

a(n) = A248353(n)^2.

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 04 2017
a(27) and beyond from Michael S. Branicky, Dec 29 2024

A096915 Smallest prime which when appended to n produces a prime.

Original entry on oeis.org

3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 7, 23, 7, 3, 3, 11, 3, 11, 11, 3, 3, 11, 7, 3, 7, 3, 3, 7, 3, 17, 7, 7, 3, 7, 3, 3, 7, 13, 11, 11, 3, 3, 7, 3, 23, 7, 19, 3, 13, 3, 23, 7, 7, 3, 7, 7, 3, 7, 3, 11, 11, 3, 3, 19, 3, 3, 11, 13, 29, 7, 3, 3, 7, 43, 3, 7, 7, 11, 11, 3, 11, 19, 3, 3, 7, 3, 23, 7, 37, 41
Offset: 1

Author

Bodo Zinser, Aug 18 2004

Keywords

Examples

			a(20)=11 because 11 is prime and 2011 is the smallest prime starting with 20 (2003 is not allowed).
		

Crossrefs

Cf. A088606, A089777 (the resulting primes). Records: A137177, A144593.

Programs

  • Mathematica
    f[n_] := Block[{p = 2, a = IntegerDigits[n]}, While[ !PrimeQ[ FromDigits[ Join[a, IntegerDigits[ Prime[p]]] ]], p++ ]; Prime[p]]; Table[ f[n], {n, 92}] (* Robert G. Wilson v, Aug 20 2004 *)
    sp[n_]:=Module[{p=3},While[CompositeQ[n*10^IntegerLength[p]+p],p= NextPrime[ p]];p]; Array[sp,100] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 26 2019 *)
  • PARI
    A096915(n) = { local(p=1); until(isprime(eval(Str(n,p=nextprime(p+2)))),);p} \\ M. F. Hasler, Jan 05 2009

Extensions

More terms from Robert G. Wilson v, Aug 20 2004
Cross-reference to indices of records corrected by M. F. Hasler, Jan 14 2009

A093090 Start with a(1)=1, a(2)=3, apply rule of A093089.

Original entry on oeis.org

1, 3, 4, 7, 11, 18, 29, 47, 76, 1, 23, 77, 24, 1, 0, 1, 1, 25, 1, 1, 2, 26, 26, 2, 3, 28, 52, 28, 5, 31, 80, 80, 33, 36, 1, 11, 1, 60, 1, 13, 69, 37, 12, 12, 61, 61, 14, 82, 1, 6, 49, 24, 73, 1, 22, 75, 96, 83, 7, 55, 73, 97, 74, 23, 97, 1, 71, 1, 79, 90, 62, 1, 28, 1, 70, 1, 71, 97, 1, 20
Offset: 1

Author

Bodo Zinser, Mar 20 2004

Keywords

Crossrefs

Extensions

More terms from Bodo Zinser, Mar 21 2004

A093089 "Fibonacci in pairs": start with a(1)=1, a(2)=1; repeatedly adjoin sum of previous two terms but chopped from the right into pairs of 2 digits.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 44, 90, 45, 1, 34, 1, 35, 46, 35, 35, 36, 81, 81, 70, 71, 1, 17, 1, 62, 1, 51, 1, 41, 72, 18, 18, 63, 63, 52, 52, 42, 1, 13, 90, 36, 81, 1, 26, 1, 15, 1, 4, 94, 43, 14, 1, 3, 1, 26, 1, 17, 82, 27, 27, 16, 16, 5, 98, 1, 37, 57, 15, 4, 4, 27, 27, 18
Offset: 1

Author

Bodo Zinser, Mar 20 2004

Keywords

Comments

Do all pairs of digits appear infinitely often? The sequence is not periodic.

Examples

			... a(11)=a(9)+a(10), a(12)=left pair of (a(10)+a(11)=55+89=1 44), a(13)=right pair of (a(10)+a(11)=55+89=1 44), a(14)=a(11)+a(12) ...
		

Crossrefs

A093091 "Fibonacci in pairs from left": start with a(1)=1, a(2)=1; repeatedly adjoin sum of previous two terms but chopped from the left into pairs of 2 digits.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 14, 4, 10, 3, 18, 14, 13, 21, 32, 27, 34, 53, 59, 61, 87, 11, 2, 12, 0, 14, 8, 98, 13, 14, 12, 14, 22, 10, 6, 11, 1, 27, 26, 26, 36, 32, 16, 17, 12, 28, 53, 52, 62, 68, 48, 33, 29, 40, 81, 10, 5, 11, 4, 13, 0, 11, 6, 81, 62, 69, 12, 1, 91, 15, 16
Offset: 1

Author

Bodo Zinser, Mar 20 2004

Keywords

Comments

Do all pairs of digits appear infinitely often? The sequence is not periodic.

Examples

			... a(11)=a(9)+a(10), a(12)=left pair of (a(10)+a(11)=55+89=14 4),
a(13)=right pair of (a(10)+a(11)=55+89=14 4),
a(14)=left pair of (a(11)+a(12)=89+14=10 3),
a(15)=right pair of (a(11)+a(12)=89+14=10 3), a(16)=a(12)+a(13) ...
		

Crossrefs

A093093 "Fibonacci in digits - up and down": start with a(1)=1, a(2)=1; repeatedly adjoin either the sum of the two previous terms (if that sum happens to be odd) or else adjoin digits of the sum of previous two terms (if that sum happens to be even).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 3, 4, 2, 4, 7, 6, 6, 11, 13, 1, 2, 17, 2, 4, 1, 4, 3, 19, 19, 6, 5, 5, 7, 2, 2, 3, 8, 25, 11, 1, 0, 1, 2, 9, 4, 5, 11, 33, 3, 6, 1, 2, 1, 1, 3, 11, 13, 9, 1, 6, 4, 4, 3, 6, 9, 7, 3, 3, 2, 4, 1, 4, 2, 4, 2, 2, 1, 0, 7, 1, 0, 8, 7, 9, 15, 1, 6, 1, 0, 6, 5, 6, 5, 5, 6, 6, 6, 4, 3, 1, 7
Offset: 1

Author

Bodo Zinser, Mar 20 2004

Keywords

Examples

			... a(8)=a(6)+a(7), a(9)=left digit of (a(7)+a(8)=13+21=3 4) as 34 is even, a(10)=right digit of (a(7)+a(8)=13+21=3 4) as 34 is even, a(13)=a(9)+a(10) as odd, ...
		

Crossrefs