A152652 Least prime p with digit sum A047235(n).
2, 13, 17, 19, 59, 79, 389, 499, 1889, 1999, 6899, 17989, 39989, 49999, 98999, 199999, 599999, 799999, 2999999, 4999999, 9899999, 19999999, 59999999, 189997999, 389999999, 689899999, 998999999, 2999899999, 6999999989, 9899989999, 39899999999, 68899999999, 98999999999
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..1713
Crossrefs
Programs
-
Magma
T:=[ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..22] ]; S:=[]; p:=2; for k in T do while &+Intseq(p, 10) ne k do p:=NextPrime(p); end while; Append(~S,p); end for; S; // Klaus Brockhaus, Dec 13 2008
-
PARI
a(n) = {n = (n-1)\2*6+3+(-1)^n ; t = ceil(n/9); leastfound = oo; while(leastfound == oo, my(p = partitions(n, [1,9], [t,t])); v = vector(#p, i, oo); for(i = 1, #p, if(fromdigits(Vec(p[i])) > leastfound, next(2)); forperm(Vec(p[i]), q, if(isprime(fromdigits(Vec(q))), leastfound = min(leastfound, fromdigits(Vec(q))); v[i] = min(v[i], fromdigits(Vec(q))); next(2); ) ) ); t++ ); leastfound }\\ David A. Corneth, Jun 13 2020
Formula
Extensions
Edited and extended by R. J. Mathar, Dec 12 2008
a(20)-a(22) from Klaus Brockhaus, Dec 13 2008
More terms from Jinyuan Wang, Jun 13 2020
Comments