cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A144983 Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).

Original entry on oeis.org

2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A198755 Decimal expansion of x>0 satisfying x^2+cos(x)=2.

Original entry on oeis.org

1, 3, 2, 5, 6, 2, 2, 5, 1, 8, 1, 4, 7, 5, 3, 6, 6, 2, 3, 4, 8, 3, 2, 2, 9, 0, 2, 9, 3, 8, 7, 9, 8, 7, 4, 4, 3, 3, 0, 4, 5, 4, 6, 7, 2, 5, 6, 5, 7, 6, 6, 4, 9, 5, 2, 6, 2, 7, 4, 0, 1, 8, 5, 3, 2, 0, 0, 8, 9, 5, 0, 6, 1, 6, 5, 9, 3, 0, 2, 4, 6, 5, 0, 3, 4, 1, 1, 0, 9, 7, 5, 9, 7, 7, 5, 7, 5, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 30 2011

Keywords

Comments

For many choices of a,b,c, there is a unique x>0 satisfying a*x^2+b*cos(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c..... x
1.... 1.... 2..... A198755
1.... 1.... 3..... A198756
1.... 1.... 4..... A198757
1.... 2.... 3..... A198758
1.... 2.... 4..... A198811
1.... 3.... 3..... A198812
1.... 3.... 4..... A198813
1.... 4.... 3..... A198814
1.... 4.... 4..... A198815
1.... 1.... 0..... A125578
1... -1.... 1..... A198816
1... -1.... 2..... A198817
1... -1.... 3..... A198818
1... -1.... 4..... A198819
1... -2.... 1..... A198821
1... -2.... 2..... A198822
1... -2.... 3..... A198823
1... -2.... 4..... A198824
1... -2... -1..... A198825
1... -3.... 0..... A197807
1... -3.... 1..... A198826
1... -3.... 2..... A198828
1... -3.... 3..... A198829
1... -3.... 4..... A198830
1... -3... -1..... A198835
1... -3... -2..... A198836
1... -4.... 0..... A197808
1... -4.... 1..... A198838
1... -4.... 2..... A198839
1... -4.... 3..... A198840
1... -4.... 4..... A198841
1... -4... -1..... A198842
1... -4... -2..... A198843
1... -4... -3..... A198844
2.... 0.... 1..... A010503
2.... 0.... 3..... A115754
2.... 1.... 2..... A198820
2.... 1.... 3..... A198827
2.... 1.... 4..... A198837
2.... 2.... 3..... A198869
2.... 3.... 4..... A198870
2... -1.... 1..... A198871
2... -1.... 2..... A198872
2... -1.... 3..... A198873
2... -1.... 4..... A198874
2... -2... -1..... A198875
2... -2.... 3..... A198876
2... -3... -2..... A198877
2... -3... -1..... A198878
2... -3.... 1..... A198879
2... -3.... 2..... A198880
2... -3.... 3..... A198881
2... -3.... 4..... A198882
2... -4... -3..... A198883
2... -4... -1..... A198884
2... -4.... 1..... A198885
2... -4.... 3..... A198886
3.... 0.... 1..... A020760
3.... 1.... 2..... A198868
3.... 1.... 3..... A198917
3.... 1.... 4..... A198918
3.... 2.... 3..... A198919
3.... 2.... 4..... A198920
3.... 3.... 4..... A198921
3... -1.... 1..... A198922
3... -1.... 2..... A198924
3... -1.... 3..... A198925
3... -1.... 4..... A198926
3... -2... -1..... A198927
3... -2.... 1..... A198928
3... -2.... 2..... A198929
3... -2.... 3..... A198930
3... -2.... 4..... A198931
3... -3... -1..... A198932
3... -3.... 1..... A198933
3... -3.... 2..... A198934
3... -3.... 4..... A198935
3... -4... -3..... A198936
3... -4... -2..... A198937
3... -4... -1..... A198938
3... -4.... 1..... A198939
3... -4.... 2..... A198940
3... -4.... 3..... A198941
3... -4.... 4..... A198942
4.... 1.... 2..... A198923
4.... 1.... 3..... A198983
4.... 1.... 4..... A198984
4.... 2.... 3..... A198985
4.... 3.... 4..... A198986
4... -1.... 1..... A198987
4... -1.... 2..... A198988
4... -1.... 3..... A198989
4... -1.... 4..... A198990
4... -2... -1..... A198991
4... -2.... 1..... A198992
4... -2... -3..... A198993
4... -3... -2..... A198994
4... -3... -1..... A198995
4... -2.... 1..... A198996
4... -3.... 2..... A198997
4... -3.... 3..... A198998
4... -3.... 4..... A198999
4... -4... -3..... A199000
4... -4... -1..... A199001
4... -4.... 1..... A199002
4... -4.... 3..... A199003
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A198755, take f(x,u,v)=x^2+u*cos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.32562251814753662348322902938798744330...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A198655 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110]
    RealDigits[r] (* A198755 *)
    (* Program 2: implicit surface of x^2+u*cos(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*Cos[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A198755 *)

A198866 Decimal expansion of x < 0 satisfying x^2 + sin(x) = 1.

Original entry on oeis.org

1, 4, 0, 9, 6, 2, 4, 0, 0, 4, 0, 0, 2, 5, 9, 6, 2, 4, 9, 2, 3, 5, 5, 9, 3, 9, 7, 0, 5, 8, 9, 4, 9, 3, 5, 4, 7, 1, 2, 3, 5, 4, 8, 3, 5, 1, 0, 7, 8, 9, 0, 1, 5, 1, 5, 1, 0, 1, 6, 6, 8, 3, 0, 0, 9, 9, 1, 8, 3, 6, 0, 1, 6, 7, 3, 1, 8, 1, 4, 5, 2, 5, 1, 6, 8, 7, 4, 8, 9, 2, 1, 4, 3, 2, 5, 9, 0, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x having a*x^2 + b*sin(x) = c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A124597
1.... 1.... 1.... A198866, A198867
1.... 1.... 2.... A199046, A199047
1.... 1.... 3.... A199048, A199049
1.... 2.... 0.... A198414
1.... 2.... 1.... A199080, A199081
1.... 2.... 2.... A199082, A199083
1.... 2.... 3.... A199050, A199051
1.... 3.... 0.... A198415
1.... 3... -1.... A199052, A199053
1.... 3.... 1.... A199054, A199055
1.... 3.... 2.... A199056, A199057
1.... 3.... 3.... A199058, A199059
2.... 1.... 0.... A198583
2.... 1.... 1.... A199061, A199062
2.... 1.... 2.... A199063, A199064
2.... 1.... 3.... A199065, A199066
2.... 2.... 1.... A199067, A199068
2.... 2.... 3.... A199069, A199070
2.... 3.... 0.... A198605
2.... 3.... 1.... A199071, A199072
2.... 3.... 2.... A199073, A199074
2.... 3.... 3.... A199075, A199076
3.... 0.... 1.... A020760
3.... 1.... 1.... A199060, A199077
3.... 1.... 2.... A199078, A199079
3.... 1.... 3.... A199150, A199151
3.... 2.... 1.... A199152, A199153
3.... 2.... 2.... A199154, A199155
3.... 2.... 3.... A199156, A199157
3.... 3.... 1.... A199158, A199159
3.... 3.... 2.... A199160, A199161
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v), u, v) = 0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A198866, take f(x,u,v) = x^2 + u*sin(x) - v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			negative: -1.40962400400259624923559397058949354...
positive:  0.63673265080528201088799090383828005...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1: this sequence and A198867 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.41, -1.40}, WorkingPrecision -> 110]
    RealDigits[r] (* this sequence *)
    r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110]
    RealDigits[r] (* A198867 *)
    (* Program 2: implicit surface of x^2+u*sin(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*Sin[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 6}, {v, u, 12}];
    ListPlot3D[Flatten[t, 1]]  (* for this sequence *)
  • PARI
    a=1; b=1; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 20 2019

A047235 Numbers that are congruent to {2, 4} mod 6.

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196, 200, 202, 206
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 19 ).
Complement of A047273; A093719(a(n)) = 0. - Reinhard Zumkeller, Oct 01 2008
One could prefix an initial term "1" (or not) and define this sequence through a(n+1) = a(n) + (a(n) mod 6). See A001651 for the analog with 3, A235700 (with 5), A047350 (with 7), A007612 (with 9) and A102039 (with 10). Using 4 or 8 yields a constant sequence from that term on. - M. F. Hasler, Jan 14 2014
Nonnegative m such that m^2/6 + 1/3 is an integer. - Bruno Berselli, Apr 13 2017
Numbers divisible by 2 but not by 3. - David James Sycamore, Apr 04 2018
Numbers k for which A276086(k) is of the form 6m+3. - Antti Karttunen, Dec 03 2022

Crossrefs

Cf. A020760, A020832, A093719, A047273 (complement), A120325 (characteristic function).
Equals 2*A001651.
Cf. A007310 ((6*n+(-1)^n-3)/2). - Bruno Berselli, Jun 24 2010
Positions of 3's in A053669 and in A358840.

Programs

  • Magma
    [ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..70] ]; // Klaus Brockhaus, Dec 13 2008
    
  • Maple
    seq(6*floor((n+1)/2) + 3 + (-1)^n, n=1..67); # Gary Detlefs, Mar 02 2010
  • Mathematica
    Flatten[Table[{6n - 4, 6n - 2}, {n, 40}]] (* Alonso del Arte, Oct 27 2014 *)
  • PARI
    a(n)=(n-1)\2*6+3+(-1)^n \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    first(n) = my(v = vector(n, i, 3*i - 1)); forstep(i = 2, n, 2, v[i]--); v \\ David A. Corneth, Oct 20 2017

Formula

a(n) = 2*A001651(n).
n such that phi(3*n) = phi(2*n). - Benoit Cloitre, Aug 06 2003
G.f.: 2*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). a(n) = 3*n - 3/2 - (-1)^n/2. - R. J. Mathar, Nov 22 2008
a(n) = 3*n + 5..n odd, 3*n + 4..n even a(n) = 6*floor((n+1)/2) + 3 + (-1)^n. - Gary Detlefs, Mar 02 2010
a(n) = 6*n - a(n-1) - 6 (with a(1) = 2). - Vincenzo Librandi, Aug 05 2010
a(n+1) = a(n) + (a(n) mod 6). - M. F. Hasler, Jan 14 2014
Sum_{n>=1} 1/a(n)^2 = Pi^2/27. - Dimitris Valianatos, Oct 10 2017
a(n) = (6*n - (-1)^n - 3)/2. - Ammar Khatab, Aug 23 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)). - Amiram Eldar, Dec 11 2021
E.g.f.: 2 + ((6*x - 3)*exp(x) - exp(-x))/2. - David Lovler, Aug 25 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2/sqrt(3) (10 * A020832).
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/sqrt(3) (A020760). (End)

A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

3, 3, 9, 9, 8, 1, 0, 4, 3, 5, 8, 4, 8, 5, 6, 2, 6, 4, 8, 0, 2, 6, 6, 5, 7, 5, 9, 1, 0, 3, 2, 4, 4, 6, 8, 7, 2, 0, 0, 5, 7, 5, 8, 6, 9, 7, 7, 0, 9, 1, 4, 3, 5, 2, 5, 9, 2, 9, 5, 3, 9, 7, 6, 8, 2, 1, 0, 2, 0, 0, 3, 0, 4, 6, 3, 2, 3, 7, 0, 3, 4, 4, 7, 7, 8, 7, 5
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.339981043584856264802665759103244687200575869770914352592953...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 3], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3-2*sqrt(6/5))/7).

A372268 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

8, 6, 1, 1, 3, 6, 3, 1, 1, 5, 9, 4, 0, 5, 2, 5, 7, 5, 2, 2, 3, 9, 4, 6, 4, 8, 8, 8, 9, 2, 8, 0, 9, 5, 0, 5, 0, 9, 5, 7, 2, 5, 3, 7, 9, 6, 2, 9, 7, 1, 7, 6, 3, 7, 6, 1, 5, 7, 2, 1, 9, 2, 0, 9, 0, 6, 5, 2, 9, 4, 7, 1, 4, 9, 5, 0, 4, 8, 8, 6, 5, 7, 0, 4, 1, 6, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.861136311594052575223946488892809505095725379629717637615721...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3+2*sqrt(6/5))/7).

A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

5, 3, 8, 4, 6, 9, 3, 1, 0, 1, 0, 5, 6, 8, 3, 0, 9, 1, 0, 3, 6, 3, 1, 4, 4, 2, 0, 7, 0, 0, 2, 0, 8, 8, 0, 4, 9, 6, 7, 2, 8, 6, 6, 0, 6, 9, 0, 5, 5, 5, 9, 9, 5, 6, 2, 0, 2, 2, 3, 1, 6, 2, 7, 0, 5, 9, 4, 7, 1, 1, 8, 5, 3, 6, 7, 7, 5, 5, 2, 9, 1, 0, 3, 5, 8, 0, 3
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.538469310105683091036314420700208804967286606905559956202231...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5-2*sqrt(10/7))/3.

A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

9, 0, 6, 1, 7, 9, 8, 4, 5, 9, 3, 8, 6, 6, 3, 9, 9, 2, 7, 9, 7, 6, 2, 6, 8, 7, 8, 2, 9, 9, 3, 9, 2, 9, 6, 5, 1, 2, 5, 6, 5, 1, 9, 1, 0, 7, 6, 2, 5, 3, 0, 8, 6, 2, 8, 7, 3, 7, 6, 2, 2, 8, 6, 5, 4, 3, 7, 7, 0, 7, 9, 4, 9, 1, 6, 6, 8, 6, 8, 4, 6, 9, 4, 1, 1, 4, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.906179845938663992797626878299392965125651910762530862873762...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5+2*sqrt(10/7))/3.

A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

2, 3, 8, 6, 1, 9, 1, 8, 6, 0, 8, 3, 1, 9, 6, 9, 0, 8, 6, 3, 0, 5, 0, 1, 7, 2, 1, 6, 8, 0, 7, 1, 1, 9, 3, 5, 4, 1, 8, 6, 1, 0, 6, 3, 0, 1, 4, 0, 0, 2, 1, 3, 5, 0, 1, 8, 1, 3, 9, 5, 1, 6, 4, 5, 7, 4, 2, 7, 4, 9, 3, 4, 2, 7, 5, 6, 3, 9, 8, 4, 2, 2, 4, 9, 2, 2, 4
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.238619186083196908630501721680711935418610630140021350181395...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372272 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

6, 6, 1, 2, 0, 9, 3, 8, 6, 4, 6, 6, 2, 6, 4, 5, 1, 3, 6, 6, 1, 3, 9, 9, 5, 9, 5, 0, 1, 9, 9, 0, 5, 3, 4, 7, 0, 0, 6, 4, 4, 8, 5, 6, 4, 3, 9, 5, 1, 7, 0, 0, 7, 0, 8, 1, 4, 5, 2, 6, 7, 0, 5, 8, 5, 2, 1, 8, 3, 4, 9, 6, 6, 0, 7, 1, 4, 3, 1, 0, 0, 9, 4, 4, 2, 8, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.661209386466264513661399595019905347006448564395170070814526...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Middle positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.
Showing 1-10 of 56 results. Next