A382104 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.
6, 5, 2, 1, 4, 5, 1, 5, 4, 8, 6, 2, 5, 4, 6, 1, 4, 2, 6, 2, 6, 9, 3, 6, 0, 5, 0, 7, 7, 8, 0, 0, 0, 5, 9, 2, 7, 6, 4, 6, 5, 1, 3, 0, 4, 1, 6, 6, 1, 0, 6, 4, 5, 9, 5, 0, 7, 4, 7, 0, 6, 8, 0, 4, 8, 1, 2, 4, 8, 1, 3, 2, 5, 3, 4, 0, 8, 9, 6, 4, 8, 2, 7, 8, 0, 1, 6
Offset: 0
Examples
0.65214515486254614262693605077800059276465130416610645...
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.4, n=4.
- A.H.M. Smeets, Python program for Legendre-Gauss quadrature constants.
- Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature.
Crossrefs
Cf. A372268.
Programs
-
Mathematica
RealDigits[1/2 + Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)
-
PARI
1/2 + (1/6)*sqrt(5/6) \\ Stefano Spezia, May 22 2025
Formula
Equals 1/2 + (1/6)*sqrt(5/6).
Minimal polynomial: 216*x^2 - 216*x + 49. - Stefano Spezia, May 22 2025
Comments