cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A382686 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372272.

Original entry on oeis.org

3, 6, 0, 7, 6, 1, 5, 7, 3, 0, 4, 8, 1, 3, 8, 6, 0, 7, 5, 6, 9, 8, 3, 3, 5, 1, 3, 8, 3, 7, 7, 1, 6, 1, 1, 1, 6, 6, 1, 5, 2, 1, 8, 9, 2, 7, 4, 6, 7, 4, 5, 4, 8, 2, 2, 8, 9, 7, 3, 9, 2, 4, 0, 2, 3, 7, 1, 4, 0, 0, 3, 7, 8, 3, 7, 2, 6, 1, 7, 1, 8, 3, 2, 0, 9, 6, 2
Offset: 0

Views

Author

A.H.M. Smeets, Apr 03 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
6 | A372271, A372272, A372273 | A382107, this sequence, A382687

Examples

			0.36076157304813860756983351383771611166152189274674...
		

Crossrefs

Cf. A372272.

A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

3, 3, 9, 9, 8, 1, 0, 4, 3, 5, 8, 4, 8, 5, 6, 2, 6, 4, 8, 0, 2, 6, 6, 5, 7, 5, 9, 1, 0, 3, 2, 4, 4, 6, 8, 7, 2, 0, 0, 5, 7, 5, 8, 6, 9, 7, 7, 0, 9, 1, 4, 3, 5, 2, 5, 9, 2, 9, 5, 3, 9, 7, 6, 8, 2, 1, 0, 2, 0, 0, 3, 0, 4, 6, 3, 2, 3, 7, 0, 3, 4, 4, 7, 7, 8, 7, 5
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.339981043584856264802665759103244687200575869770914352592953...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 3], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3-2*sqrt(6/5))/7).

A372268 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

8, 6, 1, 1, 3, 6, 3, 1, 1, 5, 9, 4, 0, 5, 2, 5, 7, 5, 2, 2, 3, 9, 4, 6, 4, 8, 8, 8, 9, 2, 8, 0, 9, 5, 0, 5, 0, 9, 5, 7, 2, 5, 3, 7, 9, 6, 2, 9, 7, 1, 7, 6, 3, 7, 6, 1, 5, 7, 2, 1, 9, 2, 0, 9, 0, 6, 5, 2, 9, 4, 7, 1, 4, 9, 5, 0, 4, 8, 8, 6, 5, 7, 0, 4, 1, 6, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.861136311594052575223946488892809505095725379629717637615721...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3+2*sqrt(6/5))/7).

A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

5, 3, 8, 4, 6, 9, 3, 1, 0, 1, 0, 5, 6, 8, 3, 0, 9, 1, 0, 3, 6, 3, 1, 4, 4, 2, 0, 7, 0, 0, 2, 0, 8, 8, 0, 4, 9, 6, 7, 2, 8, 6, 6, 0, 6, 9, 0, 5, 5, 5, 9, 9, 5, 6, 2, 0, 2, 2, 3, 1, 6, 2, 7, 0, 5, 9, 4, 7, 1, 1, 8, 5, 3, 6, 7, 7, 5, 5, 2, 9, 1, 0, 3, 5, 8, 0, 3
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.538469310105683091036314420700208804967286606905559956202231...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5-2*sqrt(10/7))/3.

A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

9, 0, 6, 1, 7, 9, 8, 4, 5, 9, 3, 8, 6, 6, 3, 9, 9, 2, 7, 9, 7, 6, 2, 6, 8, 7, 8, 2, 9, 9, 3, 9, 2, 9, 6, 5, 1, 2, 5, 6, 5, 1, 9, 1, 0, 7, 6, 2, 5, 3, 0, 8, 6, 2, 8, 7, 3, 7, 6, 2, 2, 8, 6, 5, 4, 3, 7, 7, 0, 7, 9, 4, 9, 1, 6, 6, 8, 6, 8, 4, 6, 9, 4, 1, 1, 4, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.906179845938663992797626878299392965125651910762530862873762...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5+2*sqrt(10/7))/3.

A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

2, 3, 8, 6, 1, 9, 1, 8, 6, 0, 8, 3, 1, 9, 6, 9, 0, 8, 6, 3, 0, 5, 0, 1, 7, 2, 1, 6, 8, 0, 7, 1, 1, 9, 3, 5, 4, 1, 8, 6, 1, 0, 6, 3, 0, 1, 4, 0, 0, 2, 1, 3, 5, 0, 1, 8, 1, 3, 9, 5, 1, 6, 4, 5, 7, 4, 2, 7, 4, 9, 3, 4, 2, 7, 5, 6, 3, 9, 8, 4, 2, 2, 4, 9, 2, 2, 4
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.238619186083196908630501721680711935418610630140021350181395...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

9, 3, 2, 4, 6, 9, 5, 1, 4, 2, 0, 3, 1, 5, 2, 0, 2, 7, 8, 1, 2, 3, 0, 1, 5, 5, 4, 4, 9, 3, 9, 9, 4, 6, 0, 9, 1, 3, 4, 7, 6, 5, 7, 3, 7, 7, 1, 2, 2, 8, 9, 8, 2, 4, 8, 7, 2, 5, 4, 9, 6, 1, 6, 5, 2, 6, 6, 1, 3, 5, 0, 0, 8, 4, 4, 2, 0, 0, 1, 9, 6, 2, 7, 6, 2, 8, 8
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.932469514203152027812301554493994609134765737712289824872549...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

4, 0, 5, 8, 4, 5, 1, 5, 1, 3, 7, 7, 3, 9, 7, 1, 6, 6, 9, 0, 6, 6, 0, 6, 4, 1, 2, 0, 7, 6, 9, 6, 1, 4, 6, 3, 3, 4, 7, 3, 8, 2, 0, 1, 4, 0, 9, 9, 3, 7, 0, 1, 2, 6, 3, 8, 7, 0, 4, 3, 2, 5, 1, 7, 9, 4, 6, 6, 3, 8, 1, 3, 2, 2, 6, 1, 2, 5, 6, 5, 5, 3, 2, 8, 3, 1, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.405845151377397166906606412076961463347382014099370126387043...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | this sequence, A372275, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.741531185599394439863864773280788407074147647141390260119955...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, this sequence, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

9, 4, 9, 1, 0, 7, 9, 1, 2, 3, 4, 2, 7, 5, 8, 5, 2, 4, 5, 2, 6, 1, 8, 9, 6, 8, 4, 0, 4, 7, 8, 5, 1, 2, 6, 2, 4, 0, 0, 7, 7, 0, 9, 3, 7, 6, 7, 0, 6, 1, 7, 7, 8, 3, 5, 4, 8, 7, 6, 9, 1, 0, 3, 9, 1, 3, 0, 6, 3, 3, 3, 0, 3, 5, 4, 8, 4, 0, 1, 4, 0, 8, 0, 5, 7, 3, 0
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.949107912342758524526189684047851262400770937670617783548769...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, this sequence | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 7], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.8, 1.0, 429*x^6 - 693*x^4 + 315*x^ - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Largest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.
Showing 1-10 of 19 results. Next