cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x).

Original entry on oeis.org

1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x satisfying a*x^2 + b*x + c = tan(x) and 0 < x < Pi/2.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A200338
1.... 0.... 2.... A200339
1.... 0.... 3.... A200340
1.... 0.... 4.... A200341
1.... 1.... 1.... A200342
1.... 1.... 2.... A200343
1.... 1.... 3.... A200344
1.... 1.... 4.... A200345
1.... 2.... 1.... A200346
1.... 2.... 2.... A200347
1.... 2.... 3.... A200348
1.... 2.... 4.... A200349
1.... 3.... 1.... A200350
1.... 3.... 2.... A200351
1.... 3.... 3.... A200352
1.... 3.... 4.... A200353
1.... 4.... 1.... A200354
1.... 4.... 2.... A200355
1.... 4.... 3.... A200356
1.... 4.... 4.... A200357
2.... 0.... 1.... A200358
2.... 0.... 3.... A200359
2.... 1.... 1.... A200360
2.... 1.... 2.... A200361
2.... 1.... 3.... A200362
2.... 1.... 4.... A200363
2.... 2.... 1.... A200364
2.... 2.... 3.... A200365
2.... 3.... 1.... A200366
2.... 3.... 2.... A200367
2.... 3.... 3.... A200368
2.... 3.... 4.... A200369
2.... 4.... 1.... A200382
2.... 4.... 3.... A200383
3.... 0.... 1.... A200384
3.... 0.... 2.... A200385
3.... 0.... 4.... A200386
3.... 1.... 1.... A200387
3.... 1.... 2.... A200388
3.... 1.... 3.... A200389
3.... 1.... 4.... A200390
3.... 2.... 1.... A200391
3.... 2.... 2.... A200392
3.... 2.... 3.... A200393
3.... 2.... 4.... A200394
3.... 3.... 1.... A200395
3.... 3.... 2.... A200396
3.... 3.... 4.... A200397
3.... 4.... 1.... A200398
3.... 4.... 2.... A200399
3.... 4.... 3.... A200400
3.... 4.... 4.... A200401
4.... 0.... 1.... A200410
4.... 0.... 3.... A200411
4.... 1.... 1.... A200412
4.... 1.... 2.... A200413
4.... 1.... 3.... A200414
4.... 1.... 4.... A200415
4.... 2.... 1.... A200416
4.... 2.... 3.... A200417
4.... 3.... 1.... A200418
4.... 3.... 2.... A200419
4.... 3.... 3.... A200420
4.... 3.... 4.... A200421
4.... 4.... 1.... A200422
4.... 4.... 3.... A200423
1... -1.... 1.... A200477
1... -1.... 2.... A200478
1... -1.... 3.... A200479
1... -1.... 4.... A200480
1... -2.... 1.... A200481
1... -2.... 2.... A200482
1... -2.... 3.... A200483
1... -2.... 4.... A200484
1... -3.... 1.... A200485
1... -3.... 2.... A200486
1... -3.... 3.... A200487
1... -3.... 4.... A200488
1... -4.... 1.... A200489
1... -4.... 2.... A200490
1... -4.... 3.... A200491
1... -4.... 4.... A200492
2... -1.... 1.... A200493
2... -1.... 2.... A200494
2... -1.... 3.... A200495
2... -1.... 4.... A200496
2... -2.... 1.... A200497
2... -2.... 3.... A200498
2... -3.... 1.... A200499
2... -3.... 2.... A200500
2... -3.... 3.... A200501
2... -3.... 4.... A200502
2... -4.... 1.... A200584
2... -4.... 3.... A200585
2... -1.... 2.... A200586
2... -1.... 3.... A200587
2... -1.... 4.... A200588
3... -2.... 1.... A200589
3... -2.... 2.... A200590
3... -2.... 3.... A200591
3... -2.... 4.... A200592
3... -3.... 1.... A200593
3... -3.... 2.... A200594
3... -3.... 4.... A200595
3... -4.... 1.... A200596
3... -4.... 2.... A200597
3... -4.... 3.... A200598
3... -4.... 4.... A200599
4... -1.... 1.... A200600
4... -1.... 2.... A200601
4... -1.... 3.... A200602
4... -1.... 4.... A200603
4... -2.... 1.... A200604
4... -2.... 3.... A200605
4... -3.... 1.... A200606
4... -3.... 2.... A200607
4... -3.... 3.... A200608
4... -3.... 4.... A200609
4... -4.... 1.... A200610
4... -4.... 3.... A200611
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A200338, take f(x,u,v) = x^2 + u*x + v - tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=1.17209361728566903968781879581089880...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A200338 *)
    a = 1; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200338 *)
    (* Program 2: implicit surface of x^2+u*x+v=tan(x) *)
    f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}];
    ListPlot3D[Flatten[t, 1]]  (* for A200388 *)
  • PARI
    solve(x=1,1.2,x^2+1-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022

A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).

Original entry on oeis.org

1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 2.... A199597
1.... 1.... 3.... A199598
1.... 1.... 4.... A199599
1.... 2.... 1.... A199600
1.... 2.... 3.... A199601
1.... 2.... 4.... A199602
1.... 3.... 0.... A199603, A199604
1.... 3.... 1.... A199605, A199606
1.... 3.... 2.... A199607, A199608
1.... 3.... 3.... A199609, A199610
1.... 4.... 0.... A199611, A199612
1.... 4.... 1.... A199613, A199614
1.... 4.... 2.... A199615, A199616
1.... 4.... 3.... A199617, A199618
1.... 4.... 4.... A199619, A199620
2.... 1.... 0.... A199621
2.... 1.... 2.... A199622
2.... 1.... 3.... A199623
2.... 1.... 4.... A199624
2.... 2.... 1.... A199625
2.... 2.... 3.... A199661
3.... 1.... 0.... A199662
3.... 1.... 2.... A199663
3.... 1.... 3.... A199664
3.... 1.... 4.... A199665
3.... 2.... 0.... A199666
3.... 2.... 1.... A199667
3.... 2.... 3.... A199668
3.... 2.... 4.... A199669
1... -1.... 0.... A003957
1... -1.... 1.... A199722
1... -1.... 2.... A199721
1... -1.... 3.... A199720
1... -1.... 4.... A199719
1... -2.... 1.... A199726
1... -2.... 2.... A199725
1... -2.... 3.... A199724
1... -2.... 4.... A199723
1... -3.... 1.... A199730
1... -3.... 2.... A199729
1... -3.... 3.... A199728
1... -3.... 4.... A199727
1... -4.... 1.... A199737. A199738
1... -4.... 2.... A199735, A199736
1... -4.... 3.... A199733, A199734
1... -4.... 4.... A199731. A199732
2... -1.... 1.... A199742
2... -1.... 2.... A199741
2... -1.... 3.... A199740
2... -1.... 4.... A199739
2... -2.... 1.... A199776
2... -2.... 3.... A199775
2... -3.... 1.... A199780
2... -3.... 2.... A199779
2... -3.... 3.... A199778
2... -3.... 4.... A199777
2... -4.... 1.... A199782
2... -4.... 3.... A199781
3... -4.... 1.... A199786
3... -4.... 2.... A199785
3... -4.... 3.... A199784
3... -4.... 4.... A199783
3... -3.... 1.... A199789
3... -3.... 2.... A199788
3... -3.... 4.... A199787
3... -2.... 1.... A199793
3... -2.... 2.... A199792
3... -2.... 3.... A199791
3... -2.... 4.... A199790
3... -1.... 1.... A199797
3... -1.... 2.... A199796
3... -1.... 3.... A199795
3... -1.... 4.... A199794
4... -4.... 1.... A199873
4... -4.... 3.... A199872
4... -3.... 1.... A199871
4... -3.... 2.... A199870
4... -3.... 3.... A199869
4... -3.... 4.... A199868
4... -2.... 1.... A199867
4... -2.... 3.... A199866
4... -1.... 1.... A199865
4... -1.... 2.... A199864
4... -1.... 3.... A199863
4... -1.... 4.... A199862
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.1881851344514388032178109729076525973...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199597 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199597 *)
    (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A199597 *)

Extensions

Edited by Georg Fischer, Aug 03 2021

A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x).

Original entry on oeis.org

6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A199429
1.... 1.... 2.... A199430
1.... 1.... 3.... A199431
1.... 2.... 1.... A199432
1.... 2.... 2.... A199433
1.... 2.... 3.... A199434
1.... 3.... 1.... A199435
1.... 3.... 2.... A199436
1.... 3.... 3.... A199437
2.... 1.... 1.... A199438
2.... 1.... 2.... A199439
2.... 1.... 3.... A199440
2.... 2.... 1.... A199441
2.... 2.... 3.... A199442
2.... 3.... 1.... A199443
2.... 3.... 2.... A199444
2.... 3.... 3.... A199445
2.... 1.... 1.... A199446
3.... 1.... 2.... A199447
3.... 1.... 3.... A199448
3.... 2.... 1.... A199449
3.... 2.... 2.... A199450
3.... 2.... 3.... A199451
3.... 3.... 1.... A199452
3.... 3.... 2.... A199453
1... -1.... 1.... A199454
1... -1.... 2.... A199455
1... -1.... 3.... A199456
1... -2... -3.... A199457
1... -2... -2.... A199458
1... -2... -1.... A199459
1... -2... 0.... A199460
1... -2... 1.... A199461
1... -2... 2.... A199462
1... -2... 3.... A199463
1... -3... -3.... A199464
1... -3... -2.... A199465
1... -3... -1.... A199466
1... -3... 0.... A199467
1... -3... 1.... A199468
1... -3... 2.... A199469
1... -3... 3.... A199470
2... -1... 1.... A199471
2... -1... 2.... A199472
2... -1... 3.... A199473
2... -2... 1.... A199503
2... -2... 3.... A199504
3... -1... 1.... A199505
2... -1... 2.... A199506
2... -1... 3.... A199507
2... -2... 1.... A199508
2... -2... 2.... A199509
2... -2... 3.... A199510
3... -3... 1.... A199511
3... -3... 2.... A199513
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.6434363641380261586420989143040131826874...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199429 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199429 *)
    (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}];
    ListPlot3D[Flatten[t, 1]]  (* for A199429 *)
  • PARI
    g(a,b,c)=solve(x=0,abs(a)+abs(b)+abs(c), my(S=sin(x),C=sqrt(1-s^2)); a*x^2+b*x*S-c*C)
    g(1,1,1) \\ Charles R Greathouse IV, Feb 07 2025

A199170 Decimal expansion of x<0 satisfying x^2+x*cos(x)=1.

Original entry on oeis.org

1, 1, 9, 8, 3, 5, 9, 8, 4, 4, 5, 1, 8, 6, 6, 0, 2, 6, 8, 2, 6, 5, 0, 2, 1, 6, 0, 3, 4, 3, 0, 3, 0, 8, 9, 8, 9, 2, 7, 2, 6, 8, 0, 9, 3, 5, 8, 7, 4, 8, 2, 5, 6, 9, 0, 1, 4, 4, 4, 9, 2, 3, 8, 6, 8, 6, 4, 2, 7, 1, 7, 6, 1, 4, 9, 7, 1, 9, 1, 2, 5, 5, 9, 1, 7, 1, 4, 2, 8, 9, 1, 6, 9, 7, 2, 0, 9, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x satisfying a*x^2+b*x*cos(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A199170, A199171
1.... 1.... 2.... A199172, A199173
1.... 1.... 3.... A199174, A199175
1.... 2.... 1.... A199176, A199177
1.... 2.... 2.... A199178, A199179
1.... 2.... 3.... A199180, A199181
1.... 3.... 1.... A199182, A199183
1.... 3.... 2.... A199184, A199185
1.... 3.... 3.... A199186, A199187
2.... 1.... 1.... A199188, A199189
2.... 1.... 2.... A199265, A199266
2.... 1.... 3.... A199267, A199268
2.... 2.... 1.... A199269, A199270
2.... 2.... 3.... A199271, A199272
2.... 3.... 1.... A199273, A199274
2.... 3.... 2.... A199275, A199276
2.... 3.... 3.... A199277, A199278
3.... 1.... 1.... A199279, A199280
3.... 1.... 2.... A199281, A199282
3.... 1.... 3.... A199283, A199284
3.... 2.... 1.... A199285, A199286
3.... 2.... 2.... A199287, A199288
3.... 2.... 3.... A199289, A199290
3.... 3.... 1.... A199291, A199292
3.... 3.... 2.... A199293, A199294
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199170, take f(x,u,v)=x^2+u*xcos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			negative: -1.19835984451866026826502160343030898927268...
positive:  0.685174133854503187895211530638458709591...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199170 and A199171 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199170 *)
    r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199171 *)
    (* Program 2: implicit surface of x^2+u*x*cos(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0,
        1.9}, {v, u, 600}];
    ListPlot3D[Flatten[t, 1]]  (* for A199170 *)

A199370 Decimal expansion of x>0 satisfying x^2+x*sin(x)=1.

Original entry on oeis.org

7, 2, 2, 5, 8, 7, 5, 4, 9, 9, 2, 2, 5, 2, 4, 7, 6, 8, 3, 5, 5, 9, 3, 2, 8, 7, 2, 8, 7, 7, 1, 9, 6, 7, 5, 5, 1, 5, 9, 6, 4, 5, 9, 2, 1, 1, 4, 3, 9, 4, 2, 6, 9, 8, 0, 7, 7, 6, 5, 1, 4, 7, 6, 0, 2, 5, 9, 0, 9, 4, 2, 5, 0, 7, 3, 1, 6, 0, 1, 8, 3, 0, 3, 4, 3, 5, 6, 2, 9, 4, 1, 8, 7, 2, 7, 9, 8, 3, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 05 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A199370
1.... 1.... 2.... A199371
1.... 1.... 3.... A199372
1.... 2.... 1.... A199373
1.... 2.... 2.... A199374
1.... 2.... 3.... A199375
1.... 3.... 1.... A199376
1.... 3.... 2.... A199377
1.... 3.... 3.... A199378
2.... 1.... 1.... A199379
2.... 1.... 2.... A199180
2.... 1.... 3.... A199181
2.... 2.... 1.... A199182
2.... 2.... 3.... A199183
2.... 3.... 1.... A199184
2.... 3.... 2.... A199185
2.... 3.... 3.... A199186
2.... 1.... 1.... A199187
3.... 1.... 2.... A199188
3.... 1.... 3.... A199189
3.... 2.... 1....
3.... 2.... 2....
3.... 2.... 3....
3.... 3.... 1....
3.... 3.... 2....
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199370, take f(x,u,v)=x^2+u*x*sin(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.722587549922524768355932872877196755159...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1: A199370 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -1, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199370 *)
    (* Program 2: implicit surface of x^2+u*x*sin(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 2.9}, {v, u, 600}];
    ListPlot3D[Flatten[t, 1]]  (* for A199370 *)

A199046 Decimal expansion of x<0 satisfying x^2 + sin(x) = 2.

Original entry on oeis.org

1, 7, 2, 8, 4, 6, 6, 3, 1, 8, 9, 9, 7, 1, 7, 7, 2, 2, 2, 3, 5, 6, 5, 9, 1, 8, 4, 8, 2, 7, 4, 7, 9, 4, 6, 2, 7, 5, 7, 2, 0, 3, 2, 2, 2, 5, 2, 9, 5, 0, 7, 7, 4, 5, 0, 7, 4, 7, 2, 1, 4, 4, 5, 6, 9, 2, 2, 9, 8, 4, 6, 3, 1, 5, 1, 3, 8, 8, 6, 4, 5, 1, 0, 6, 7, 8, 5, 5, 9, 1, 2, 1, 7, 9, 0, 7, 3, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.72846631899717722235659184827479...
positive:  1.06154977463138382560203340351989...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.73, -1.72}, WorkingPrecision -> 110]
    RealDigits[r] (* A199046 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.06, 1.07}, WorkingPrecision -> 110]
    RealDigits[r] (* A199047 *)
  • PARI
    a=1; b=1; c=0; solve(x=-2, 0, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    a=1; b=1; c=2; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 19 2019

A199047 Decimal expansion of x>0 satisfying x^2 + sin(x) = 2.

Original entry on oeis.org

1, 0, 6, 1, 5, 4, 9, 7, 7, 4, 6, 3, 1, 3, 8, 3, 8, 2, 5, 6, 0, 2, 0, 3, 3, 4, 0, 3, 5, 1, 9, 8, 9, 9, 3, 4, 2, 0, 5, 8, 8, 7, 4, 1, 7, 8, 3, 8, 9, 2, 4, 1, 4, 8, 6, 0, 8, 4, 9, 8, 8, 9, 3, 5, 8, 0, 9, 3, 2, 5, 3, 6, 5, 8, 0, 7, 8, 0, 1, 3, 6, 8, 1, 6, 0, 5, 1, 4, 7, 7, 2, 2, 1, 6, 9, 7, 9, 5, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.72846631899717722235659184827479...
positive:  1.06154977463138382560203340351989...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.73, -1.72}, WorkingPrecision -> 110]
    RealDigits[r] (* A199046 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.06, 1.07}, WorkingPrecision -> 110]
    RealDigits[r] (* A199047 *)
  • PARI
    a=1; b=1; c=2; solve(x=0, 1.5, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    a=1; b=1; c=2; (a*x^2 + b*sin(x)==c).find_root(0,2,x) # G. C. Greubel, Feb 19 2019

Extensions

Terms a(87) onward corrected by G. C. Greubel, Feb 19 2019

A199048 Decimal expansion of x < 0 satisfying x^2 + sin(x) = 3.

Original entry on oeis.org

1, 9, 7, 9, 3, 2, 0, 1, 4, 6, 5, 5, 6, 2, 1, 1, 4, 6, 0, 3, 3, 5, 7, 4, 9, 7, 1, 3, 9, 8, 8, 4, 7, 4, 4, 5, 2, 1, 1, 6, 6, 4, 2, 1, 5, 0, 5, 9, 4, 1, 8, 4, 6, 6, 7, 9, 1, 4, 0, 9, 7, 5, 5, 5, 8, 1, 8, 1, 1, 9, 5, 8, 4, 1, 9, 3, 2, 6, 5, 0, 0, 7, 5, 5, 1, 5, 8, 8, 0, 8, 8, 6, 6, 3, 9, 3, 3, 1, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.979320146556211460335749713988...
positive:  1.4183100916225250456919496008037...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.98, -1.97}, WorkingPrecision -> 110]
    RealDigits[r] (* this sequence *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r] (* A199049 *)
  • PARI
    a=1; b=1; c=3; solve(x=-2, 0, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    a=1; b=1; c=3; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 19 2019

A199049 Decimal expansion of x > 0 satisfying x^2 + sin(x) = 3.

Original entry on oeis.org

1, 4, 1, 8, 3, 1, 0, 0, 9, 1, 6, 2, 2, 5, 2, 5, 0, 4, 5, 6, 9, 1, 9, 4, 9, 6, 0, 0, 8, 0, 3, 7, 4, 8, 2, 3, 9, 8, 7, 4, 7, 3, 3, 8, 7, 1, 5, 0, 3, 0, 4, 5, 6, 6, 1, 4, 3, 6, 9, 8, 3, 6, 8, 8, 5, 4, 8, 6, 4, 1, 9, 7, 7, 4, 5, 6, 5, 4, 9, 0, 8, 3, 2, 4, 4, 1, 8, 4, 8, 3, 8, 6, 0, 2, 5, 4, 1, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.979320146556211460335749713988...
positive:  1.4183100916225250456919496008037...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.98, -1.97}, WorkingPrecision -> 110]
    RealDigits[r] (* A199048 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r] (* A199049 *)
  • PARI
    a=1; b=1; c=3; solve(x=0, 1.5, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    a=1; b=1; c=3; (a*x^2 + b*sin(x)==c).find_root(0,2,x) # G. C. Greubel, Feb 19 2019

A199050 Decimal expansion of x<0 satisfying x^2+2*sin(x)=3.

Original entry on oeis.org

2, 1, 5, 9, 4, 7, 8, 2, 9, 6, 9, 7, 4, 1, 1, 6, 0, 1, 8, 2, 6, 8, 9, 2, 3, 8, 7, 8, 5, 2, 4, 6, 8, 9, 0, 0, 9, 2, 9, 0, 4, 7, 3, 6, 2, 4, 8, 0, 8, 4, 3, 6, 6, 7, 3, 1, 0, 5, 5, 8, 9, 2, 8, 8, 0, 1, 0, 2, 8, 9, 1, 3, 3, 4, 9, 1, 8, 2, 7, 5, 7, 1, 4, 6, 3, 4, 1, 3, 1, 8, 3, 7, 0, 2, 2, 1, 5, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -2.159478296974116018268923878524689009...
positive:  1.1024409927824745029005123269585791156...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]
    RealDigits[r] (* A199050 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r](* A199051 *)
Showing 1-10 of 56 results. Next