cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x).

Original entry on oeis.org

1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x satisfying a*x^2 + b*x + c = tan(x) and 0 < x < Pi/2.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A200338
1.... 0.... 2.... A200339
1.... 0.... 3.... A200340
1.... 0.... 4.... A200341
1.... 1.... 1.... A200342
1.... 1.... 2.... A200343
1.... 1.... 3.... A200344
1.... 1.... 4.... A200345
1.... 2.... 1.... A200346
1.... 2.... 2.... A200347
1.... 2.... 3.... A200348
1.... 2.... 4.... A200349
1.... 3.... 1.... A200350
1.... 3.... 2.... A200351
1.... 3.... 3.... A200352
1.... 3.... 4.... A200353
1.... 4.... 1.... A200354
1.... 4.... 2.... A200355
1.... 4.... 3.... A200356
1.... 4.... 4.... A200357
2.... 0.... 1.... A200358
2.... 0.... 3.... A200359
2.... 1.... 1.... A200360
2.... 1.... 2.... A200361
2.... 1.... 3.... A200362
2.... 1.... 4.... A200363
2.... 2.... 1.... A200364
2.... 2.... 3.... A200365
2.... 3.... 1.... A200366
2.... 3.... 2.... A200367
2.... 3.... 3.... A200368
2.... 3.... 4.... A200369
2.... 4.... 1.... A200382
2.... 4.... 3.... A200383
3.... 0.... 1.... A200384
3.... 0.... 2.... A200385
3.... 0.... 4.... A200386
3.... 1.... 1.... A200387
3.... 1.... 2.... A200388
3.... 1.... 3.... A200389
3.... 1.... 4.... A200390
3.... 2.... 1.... A200391
3.... 2.... 2.... A200392
3.... 2.... 3.... A200393
3.... 2.... 4.... A200394
3.... 3.... 1.... A200395
3.... 3.... 2.... A200396
3.... 3.... 4.... A200397
3.... 4.... 1.... A200398
3.... 4.... 2.... A200399
3.... 4.... 3.... A200400
3.... 4.... 4.... A200401
4.... 0.... 1.... A200410
4.... 0.... 3.... A200411
4.... 1.... 1.... A200412
4.... 1.... 2.... A200413
4.... 1.... 3.... A200414
4.... 1.... 4.... A200415
4.... 2.... 1.... A200416
4.... 2.... 3.... A200417
4.... 3.... 1.... A200418
4.... 3.... 2.... A200419
4.... 3.... 3.... A200420
4.... 3.... 4.... A200421
4.... 4.... 1.... A200422
4.... 4.... 3.... A200423
1... -1.... 1.... A200477
1... -1.... 2.... A200478
1... -1.... 3.... A200479
1... -1.... 4.... A200480
1... -2.... 1.... A200481
1... -2.... 2.... A200482
1... -2.... 3.... A200483
1... -2.... 4.... A200484
1... -3.... 1.... A200485
1... -3.... 2.... A200486
1... -3.... 3.... A200487
1... -3.... 4.... A200488
1... -4.... 1.... A200489
1... -4.... 2.... A200490
1... -4.... 3.... A200491
1... -4.... 4.... A200492
2... -1.... 1.... A200493
2... -1.... 2.... A200494
2... -1.... 3.... A200495
2... -1.... 4.... A200496
2... -2.... 1.... A200497
2... -2.... 3.... A200498
2... -3.... 1.... A200499
2... -3.... 2.... A200500
2... -3.... 3.... A200501
2... -3.... 4.... A200502
2... -4.... 1.... A200584
2... -4.... 3.... A200585
2... -1.... 2.... A200586
2... -1.... 3.... A200587
2... -1.... 4.... A200588
3... -2.... 1.... A200589
3... -2.... 2.... A200590
3... -2.... 3.... A200591
3... -2.... 4.... A200592
3... -3.... 1.... A200593
3... -3.... 2.... A200594
3... -3.... 4.... A200595
3... -4.... 1.... A200596
3... -4.... 2.... A200597
3... -4.... 3.... A200598
3... -4.... 4.... A200599
4... -1.... 1.... A200600
4... -1.... 2.... A200601
4... -1.... 3.... A200602
4... -1.... 4.... A200603
4... -2.... 1.... A200604
4... -2.... 3.... A200605
4... -3.... 1.... A200606
4... -3.... 2.... A200607
4... -3.... 3.... A200608
4... -3.... 4.... A200609
4... -4.... 1.... A200610
4... -4.... 3.... A200611
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A200338, take f(x,u,v) = x^2 + u*x + v - tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=1.17209361728566903968781879581089880...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A200338 *)
    a = 1; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200338 *)
    (* Program 2: implicit surface of x^2+u*x+v=tan(x) *)
    f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}];
    ListPlot3D[Flatten[t, 1]]  (* for A200388 *)
  • PARI
    solve(x=1,1.2,x^2+1-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022

A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).

Original entry on oeis.org

1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 2.... A199597
1.... 1.... 3.... A199598
1.... 1.... 4.... A199599
1.... 2.... 1.... A199600
1.... 2.... 3.... A199601
1.... 2.... 4.... A199602
1.... 3.... 0.... A199603, A199604
1.... 3.... 1.... A199605, A199606
1.... 3.... 2.... A199607, A199608
1.... 3.... 3.... A199609, A199610
1.... 4.... 0.... A199611, A199612
1.... 4.... 1.... A199613, A199614
1.... 4.... 2.... A199615, A199616
1.... 4.... 3.... A199617, A199618
1.... 4.... 4.... A199619, A199620
2.... 1.... 0.... A199621
2.... 1.... 2.... A199622
2.... 1.... 3.... A199623
2.... 1.... 4.... A199624
2.... 2.... 1.... A199625
2.... 2.... 3.... A199661
3.... 1.... 0.... A199662
3.... 1.... 2.... A199663
3.... 1.... 3.... A199664
3.... 1.... 4.... A199665
3.... 2.... 0.... A199666
3.... 2.... 1.... A199667
3.... 2.... 3.... A199668
3.... 2.... 4.... A199669
1... -1.... 0.... A003957
1... -1.... 1.... A199722
1... -1.... 2.... A199721
1... -1.... 3.... A199720
1... -1.... 4.... A199719
1... -2.... 1.... A199726
1... -2.... 2.... A199725
1... -2.... 3.... A199724
1... -2.... 4.... A199723
1... -3.... 1.... A199730
1... -3.... 2.... A199729
1... -3.... 3.... A199728
1... -3.... 4.... A199727
1... -4.... 1.... A199737. A199738
1... -4.... 2.... A199735, A199736
1... -4.... 3.... A199733, A199734
1... -4.... 4.... A199731. A199732
2... -1.... 1.... A199742
2... -1.... 2.... A199741
2... -1.... 3.... A199740
2... -1.... 4.... A199739
2... -2.... 1.... A199776
2... -2.... 3.... A199775
2... -3.... 1.... A199780
2... -3.... 2.... A199779
2... -3.... 3.... A199778
2... -3.... 4.... A199777
2... -4.... 1.... A199782
2... -4.... 3.... A199781
3... -4.... 1.... A199786
3... -4.... 2.... A199785
3... -4.... 3.... A199784
3... -4.... 4.... A199783
3... -3.... 1.... A199789
3... -3.... 2.... A199788
3... -3.... 4.... A199787
3... -2.... 1.... A199793
3... -2.... 2.... A199792
3... -2.... 3.... A199791
3... -2.... 4.... A199790
3... -1.... 1.... A199797
3... -1.... 2.... A199796
3... -1.... 3.... A199795
3... -1.... 4.... A199794
4... -4.... 1.... A199873
4... -4.... 3.... A199872
4... -3.... 1.... A199871
4... -3.... 2.... A199870
4... -3.... 3.... A199869
4... -3.... 4.... A199868
4... -2.... 1.... A199867
4... -2.... 3.... A199866
4... -1.... 1.... A199865
4... -1.... 2.... A199864
4... -1.... 3.... A199863
4... -1.... 4.... A199862
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.1881851344514388032178109729076525973...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199597 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199597 *)
    (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A199597 *)

Extensions

Edited by Georg Fischer, Aug 03 2021

A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x).

Original entry on oeis.org

6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A199429
1.... 1.... 2.... A199430
1.... 1.... 3.... A199431
1.... 2.... 1.... A199432
1.... 2.... 2.... A199433
1.... 2.... 3.... A199434
1.... 3.... 1.... A199435
1.... 3.... 2.... A199436
1.... 3.... 3.... A199437
2.... 1.... 1.... A199438
2.... 1.... 2.... A199439
2.... 1.... 3.... A199440
2.... 2.... 1.... A199441
2.... 2.... 3.... A199442
2.... 3.... 1.... A199443
2.... 3.... 2.... A199444
2.... 3.... 3.... A199445
2.... 1.... 1.... A199446
3.... 1.... 2.... A199447
3.... 1.... 3.... A199448
3.... 2.... 1.... A199449
3.... 2.... 2.... A199450
3.... 2.... 3.... A199451
3.... 3.... 1.... A199452
3.... 3.... 2.... A199453
1... -1.... 1.... A199454
1... -1.... 2.... A199455
1... -1.... 3.... A199456
1... -2... -3.... A199457
1... -2... -2.... A199458
1... -2... -1.... A199459
1... -2... 0.... A199460
1... -2... 1.... A199461
1... -2... 2.... A199462
1... -2... 3.... A199463
1... -3... -3.... A199464
1... -3... -2.... A199465
1... -3... -1.... A199466
1... -3... 0.... A199467
1... -3... 1.... A199468
1... -3... 2.... A199469
1... -3... 3.... A199470
2... -1... 1.... A199471
2... -1... 2.... A199472
2... -1... 3.... A199473
2... -2... 1.... A199503
2... -2... 3.... A199504
3... -1... 1.... A199505
2... -1... 2.... A199506
2... -1... 3.... A199507
2... -2... 1.... A199508
2... -2... 2.... A199509
2... -2... 3.... A199510
3... -3... 1.... A199511
3... -3... 2.... A199513
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.6434363641380261586420989143040131826874...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199429 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199429 *)
    (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}];
    ListPlot3D[Flatten[t, 1]]  (* for A199429 *)
  • PARI
    g(a,b,c)=solve(x=0,abs(a)+abs(b)+abs(c), my(S=sin(x),C=sqrt(1-s^2)); a*x^2+b*x*S-c*C)
    g(1,1,1) \\ Charles R Greathouse IV, Feb 07 2025

A199370 Decimal expansion of x>0 satisfying x^2+x*sin(x)=1.

Original entry on oeis.org

7, 2, 2, 5, 8, 7, 5, 4, 9, 9, 2, 2, 5, 2, 4, 7, 6, 8, 3, 5, 5, 9, 3, 2, 8, 7, 2, 8, 7, 7, 1, 9, 6, 7, 5, 5, 1, 5, 9, 6, 4, 5, 9, 2, 1, 1, 4, 3, 9, 4, 2, 6, 9, 8, 0, 7, 7, 6, 5, 1, 4, 7, 6, 0, 2, 5, 9, 0, 9, 4, 2, 5, 0, 7, 3, 1, 6, 0, 1, 8, 3, 0, 3, 4, 3, 5, 6, 2, 9, 4, 1, 8, 7, 2, 7, 9, 8, 3, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 05 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 1.... A199370
1.... 1.... 2.... A199371
1.... 1.... 3.... A199372
1.... 2.... 1.... A199373
1.... 2.... 2.... A199374
1.... 2.... 3.... A199375
1.... 3.... 1.... A199376
1.... 3.... 2.... A199377
1.... 3.... 3.... A199378
2.... 1.... 1.... A199379
2.... 1.... 2.... A199180
2.... 1.... 3.... A199181
2.... 2.... 1.... A199182
2.... 2.... 3.... A199183
2.... 3.... 1.... A199184
2.... 3.... 2.... A199185
2.... 3.... 3.... A199186
2.... 1.... 1.... A199187
3.... 1.... 2.... A199188
3.... 1.... 3.... A199189
3.... 2.... 1....
3.... 2.... 2....
3.... 2.... 3....
3.... 3.... 1....
3.... 3.... 2....
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199370, take f(x,u,v)=x^2+u*x*sin(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.722587549922524768355932872877196755159...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1: A199370 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -1, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199370 *)
    (* Program 2: implicit surface of x^2+u*x*sin(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 2.9}, {v, u, 600}];
    ListPlot3D[Flatten[t, 1]]  (* for A199370 *)

A199180 Decimal expansion of x<0 satisfying x^2+2*x*cos(x)=3.

Original entry on oeis.org

1, 6, 5, 2, 4, 2, 8, 0, 4, 5, 0, 4, 1, 7, 4, 2, 1, 4, 2, 4, 0, 5, 8, 9, 1, 8, 6, 6, 2, 5, 8, 0, 1, 2, 3, 8, 7, 8, 2, 1, 3, 4, 1, 5, 4, 3, 5, 2, 8, 5, 3, 3, 1, 3, 1, 8, 0, 7, 4, 8, 0, 2, 3, 8, 2, 3, 3, 3, 8, 1, 1, 9, 6, 5, 0, 3, 5, 9, 8, 9, 3, 6, 1, 4, 7, 6, 6, 4, 0, 0, 7, 2, 1, 6, 5, 5, 4, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.6524280450417421424058918662580123...
positive:  2.980645279438536834594908905579032175...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199180 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.98, 2.99}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199181 *)

A199181 Decimal expansion of x>0 satisfying x^2+2*x*cos(x)=3.

Original entry on oeis.org

2, 9, 8, 0, 6, 4, 5, 2, 7, 9, 4, 3, 8, 5, 3, 6, 8, 3, 4, 5, 9, 4, 9, 0, 8, 9, 0, 5, 5, 7, 9, 0, 3, 2, 1, 7, 5, 7, 0, 7, 3, 8, 5, 6, 3, 2, 0, 5, 6, 7, 4, 0, 2, 2, 7, 7, 6, 0, 0, 5, 6, 0, 8, 5, 2, 5, 1, 9, 6, 2, 1, 5, 4, 1, 5, 0, 3, 8, 3, 1, 1, 6, 7, 2, 8, 4, 7, 7, 0, 9, 3, 6, 3, 4, 6, 0, 6, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.6524280450417421424058918662580123...
positive:  2.980645279438536834594908905579032175...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199180 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.98, 2.99}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199181 *)

A199182 Decimal expansion of least x satisfying x^2+3*x*cos(x)=1.

Original entry on oeis.org

1, 3, 6, 0, 6, 7, 2, 7, 7, 2, 5, 1, 3, 7, 9, 7, 2, 1, 5, 2, 2, 8, 6, 0, 2, 7, 4, 8, 7, 3, 7, 9, 9, 2, 5, 8, 8, 0, 9, 6, 8, 6, 2, 8, 0, 8, 5, 7, 6, 1, 8, 0, 9, 4, 7, 4, 5, 8, 1, 9, 1, 7, 7, 1, 9, 7, 1, 2, 0, 7, 6, 2, 0, 8, 6, 5, 3, 3, 7, 9, 2, 3, 5, 3, 1, 4, 1, 9, 0, 8, 0, 8, 3, 3, 8, 2, 9, 4, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.3606727725137972152286027487379925...
greatest: 3.27746466341373058734587727791083...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199182  least of four roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.27, 3.28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199183   greatest of four roots *)

A199183 Decimal expansion of greatest x satisfying x^2 + 3*x*cos(x) = 1.

Original entry on oeis.org

3, 2, 7, 7, 4, 6, 4, 6, 6, 3, 4, 1, 3, 7, 3, 0, 5, 8, 7, 3, 4, 5, 8, 7, 7, 2, 7, 7, 9, 1, 0, 8, 3, 5, 7, 1, 7, 7, 4, 7, 8, 5, 8, 8, 5, 4, 4, 7, 9, 5, 3, 1, 4, 9, 0, 1, 3, 4, 2, 1, 2, 3, 2, 8, 6, 6, 2, 2, 6, 8, 2, 3, 3, 2, 8, 8, 5, 6, 8, 8, 0, 4, 7, 6, 8, 9, 7, 7, 7, 9, 5, 6, 8, 9, 7, 5, 7, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.3606727725137972152286027487379925...
greatest: 3.27746466341373058734587727791083...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199182  least of four roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.27, 3.28}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199183  greatest of four roots *)

Extensions

a(92) onwards corrected by Georg Fischer, Aug 03 2021

A199184 Decimal expansion of least x satisfying x^2+3*x*cos(x)=2.

Original entry on oeis.org

1, 5, 0, 9, 3, 3, 9, 0, 6, 2, 4, 6, 6, 6, 8, 8, 1, 2, 3, 4, 5, 1, 2, 5, 2, 6, 4, 1, 7, 9, 2, 1, 9, 0, 2, 9, 3, 1, 3, 5, 1, 6, 4, 6, 6, 5, 1, 7, 1, 9, 2, 6, 5, 2, 8, 1, 2, 4, 9, 8, 7, 7, 9, 1, 9, 8, 7, 3, 9, 5, 1, 1, 6, 8, 3, 1, 7, 7, 2, 1, 7, 8, 5, 5, 1, 2, 9, 3, 6, 1, 0, 0, 6, 4, 5, 1, 9, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.5093390624666881234512526417921902931351...
greatest: 3.44428460990495541079195552785381251956...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 3; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199184 least of four roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.44, 3.45}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199185 greatest of four roots *)

A199185 Decimal expansion of greatest x satisfying x^2+3*x*cos(x)=2.

Original entry on oeis.org

3, 4, 4, 4, 2, 8, 4, 6, 0, 9, 9, 0, 4, 9, 5, 5, 4, 1, 0, 7, 9, 1, 9, 5, 5, 5, 2, 7, 8, 5, 3, 8, 1, 2, 5, 1, 9, 5, 6, 9, 2, 4, 4, 7, 6, 3, 4, 8, 1, 1, 3, 7, 2, 2, 0, 4, 9, 8, 8, 0, 7, 0, 1, 6, 7, 1, 8, 7, 9, 4, 8, 9, 4, 7, 8, 9, 7, 2, 9, 4, 4, 5, 4, 9, 0, 6, 7, 2, 1, 2, 5, 6, 2, 3, 9, 6, 1, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 04 2011

Keywords

Comments

See A199170 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.5093390624666881234512526417921902931351...
greatest: 3.44428460990495541079195552785381251956...
		

Crossrefs

Cf. A199170.

Programs

  • Mathematica
    a = 1; b = 3; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199184  least of four roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.44, 3.45}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199185   greatest of four roots *)
Showing 1-10 of 53 results. Next