cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x).

Original entry on oeis.org

1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x satisfying a*x^2 + b*x + c = tan(x) and 0 < x < Pi/2.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A200338
1.... 0.... 2.... A200339
1.... 0.... 3.... A200340
1.... 0.... 4.... A200341
1.... 1.... 1.... A200342
1.... 1.... 2.... A200343
1.... 1.... 3.... A200344
1.... 1.... 4.... A200345
1.... 2.... 1.... A200346
1.... 2.... 2.... A200347
1.... 2.... 3.... A200348
1.... 2.... 4.... A200349
1.... 3.... 1.... A200350
1.... 3.... 2.... A200351
1.... 3.... 3.... A200352
1.... 3.... 4.... A200353
1.... 4.... 1.... A200354
1.... 4.... 2.... A200355
1.... 4.... 3.... A200356
1.... 4.... 4.... A200357
2.... 0.... 1.... A200358
2.... 0.... 3.... A200359
2.... 1.... 1.... A200360
2.... 1.... 2.... A200361
2.... 1.... 3.... A200362
2.... 1.... 4.... A200363
2.... 2.... 1.... A200364
2.... 2.... 3.... A200365
2.... 3.... 1.... A200366
2.... 3.... 2.... A200367
2.... 3.... 3.... A200368
2.... 3.... 4.... A200369
2.... 4.... 1.... A200382
2.... 4.... 3.... A200383
3.... 0.... 1.... A200384
3.... 0.... 2.... A200385
3.... 0.... 4.... A200386
3.... 1.... 1.... A200387
3.... 1.... 2.... A200388
3.... 1.... 3.... A200389
3.... 1.... 4.... A200390
3.... 2.... 1.... A200391
3.... 2.... 2.... A200392
3.... 2.... 3.... A200393
3.... 2.... 4.... A200394
3.... 3.... 1.... A200395
3.... 3.... 2.... A200396
3.... 3.... 4.... A200397
3.... 4.... 1.... A200398
3.... 4.... 2.... A200399
3.... 4.... 3.... A200400
3.... 4.... 4.... A200401
4.... 0.... 1.... A200410
4.... 0.... 3.... A200411
4.... 1.... 1.... A200412
4.... 1.... 2.... A200413
4.... 1.... 3.... A200414
4.... 1.... 4.... A200415
4.... 2.... 1.... A200416
4.... 2.... 3.... A200417
4.... 3.... 1.... A200418
4.... 3.... 2.... A200419
4.... 3.... 3.... A200420
4.... 3.... 4.... A200421
4.... 4.... 1.... A200422
4.... 4.... 3.... A200423
1... -1.... 1.... A200477
1... -1.... 2.... A200478
1... -1.... 3.... A200479
1... -1.... 4.... A200480
1... -2.... 1.... A200481
1... -2.... 2.... A200482
1... -2.... 3.... A200483
1... -2.... 4.... A200484
1... -3.... 1.... A200485
1... -3.... 2.... A200486
1... -3.... 3.... A200487
1... -3.... 4.... A200488
1... -4.... 1.... A200489
1... -4.... 2.... A200490
1... -4.... 3.... A200491
1... -4.... 4.... A200492
2... -1.... 1.... A200493
2... -1.... 2.... A200494
2... -1.... 3.... A200495
2... -1.... 4.... A200496
2... -2.... 1.... A200497
2... -2.... 3.... A200498
2... -3.... 1.... A200499
2... -3.... 2.... A200500
2... -3.... 3.... A200501
2... -3.... 4.... A200502
2... -4.... 1.... A200584
2... -4.... 3.... A200585
2... -1.... 2.... A200586
2... -1.... 3.... A200587
2... -1.... 4.... A200588
3... -2.... 1.... A200589
3... -2.... 2.... A200590
3... -2.... 3.... A200591
3... -2.... 4.... A200592
3... -3.... 1.... A200593
3... -3.... 2.... A200594
3... -3.... 4.... A200595
3... -4.... 1.... A200596
3... -4.... 2.... A200597
3... -4.... 3.... A200598
3... -4.... 4.... A200599
4... -1.... 1.... A200600
4... -1.... 2.... A200601
4... -1.... 3.... A200602
4... -1.... 4.... A200603
4... -2.... 1.... A200604
4... -2.... 3.... A200605
4... -3.... 1.... A200606
4... -3.... 2.... A200607
4... -3.... 3.... A200608
4... -3.... 4.... A200609
4... -4.... 1.... A200610
4... -4.... 3.... A200611
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A200338, take f(x,u,v) = x^2 + u*x + v - tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=1.17209361728566903968781879581089880...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A200338 *)
    a = 1; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200338 *)
    (* Program 2: implicit surface of x^2+u*x+v=tan(x) *)
    f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}];
    ListPlot3D[Flatten[t, 1]]  (* for A200388 *)
  • PARI
    solve(x=1,1.2,x^2+1-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022

A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).

Original entry on oeis.org

1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 2.... A199597
1.... 1.... 3.... A199598
1.... 1.... 4.... A199599
1.... 2.... 1.... A199600
1.... 2.... 3.... A199601
1.... 2.... 4.... A199602
1.... 3.... 0.... A199603, A199604
1.... 3.... 1.... A199605, A199606
1.... 3.... 2.... A199607, A199608
1.... 3.... 3.... A199609, A199610
1.... 4.... 0.... A199611, A199612
1.... 4.... 1.... A199613, A199614
1.... 4.... 2.... A199615, A199616
1.... 4.... 3.... A199617, A199618
1.... 4.... 4.... A199619, A199620
2.... 1.... 0.... A199621
2.... 1.... 2.... A199622
2.... 1.... 3.... A199623
2.... 1.... 4.... A199624
2.... 2.... 1.... A199625
2.... 2.... 3.... A199661
3.... 1.... 0.... A199662
3.... 1.... 2.... A199663
3.... 1.... 3.... A199664
3.... 1.... 4.... A199665
3.... 2.... 0.... A199666
3.... 2.... 1.... A199667
3.... 2.... 3.... A199668
3.... 2.... 4.... A199669
1... -1.... 0.... A003957
1... -1.... 1.... A199722
1... -1.... 2.... A199721
1... -1.... 3.... A199720
1... -1.... 4.... A199719
1... -2.... 1.... A199726
1... -2.... 2.... A199725
1... -2.... 3.... A199724
1... -2.... 4.... A199723
1... -3.... 1.... A199730
1... -3.... 2.... A199729
1... -3.... 3.... A199728
1... -3.... 4.... A199727
1... -4.... 1.... A199737. A199738
1... -4.... 2.... A199735, A199736
1... -4.... 3.... A199733, A199734
1... -4.... 4.... A199731. A199732
2... -1.... 1.... A199742
2... -1.... 2.... A199741
2... -1.... 3.... A199740
2... -1.... 4.... A199739
2... -2.... 1.... A199776
2... -2.... 3.... A199775
2... -3.... 1.... A199780
2... -3.... 2.... A199779
2... -3.... 3.... A199778
2... -3.... 4.... A199777
2... -4.... 1.... A199782
2... -4.... 3.... A199781
3... -4.... 1.... A199786
3... -4.... 2.... A199785
3... -4.... 3.... A199784
3... -4.... 4.... A199783
3... -3.... 1.... A199789
3... -3.... 2.... A199788
3... -3.... 4.... A199787
3... -2.... 1.... A199793
3... -2.... 2.... A199792
3... -2.... 3.... A199791
3... -2.... 4.... A199790
3... -1.... 1.... A199797
3... -1.... 2.... A199796
3... -1.... 3.... A199795
3... -1.... 4.... A199794
4... -4.... 1.... A199873
4... -4.... 3.... A199872
4... -3.... 1.... A199871
4... -3.... 2.... A199870
4... -3.... 3.... A199869
4... -3.... 4.... A199868
4... -2.... 1.... A199867
4... -2.... 3.... A199866
4... -1.... 1.... A199865
4... -1.... 2.... A199864
4... -1.... 3.... A199863
4... -1.... 4.... A199862
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.1881851344514388032178109729076525973...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199597 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199597 *)
    (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A199597 *)

Extensions

Edited by Georg Fischer, Aug 03 2021

A199460 Decimal expansion of x > 0 satisfying x = 2*sin(x).

Original entry on oeis.org

1, 8, 9, 5, 4, 9, 4, 2, 6, 7, 0, 3, 3, 9, 8, 0, 9, 4, 7, 1, 4, 4, 0, 3, 5, 7, 3, 8, 0, 9, 3, 6, 0, 1, 6, 9, 1, 7, 5, 1, 3, 4, 6, 6, 2, 7, 3, 8, 5, 4, 2, 3, 9, 6, 2, 0, 0, 0, 1, 7, 7, 4, 8, 9, 5, 9, 3, 2, 7, 8, 5, 4, 5, 3, 1, 8, 8, 7, 7, 2, 1, 5, 7, 8, 0, 4, 4, 5, 4, 5, 2, 9, 4, 0, 3, 7, 5, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.
A solution to the functional equation f'(z) = f(z+1)-f(z-1) is f(z) = exp(x*i*z). - Jean-François Alcover, Apr 04 2014
The solution c of s/c = 2, where s = arclength and c = chord length on the unit circle. - Clark Kimberling, Jul 08 2020

Examples

			1.895494267033980947144035738093601691751...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = 0;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /.  FindRoot[f[x] == g[x], {x, 1.89, 1.90}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199460 greatest of three roots *)

Formula

Equals lim_{n->oo} x_n where x_(n+1)=2*sin(x_n). - Christoph B. Kassir, Jun 30 2021

A199430 Decimal expansion of x>0 satisfying x^2+x*sin(x)=2*cos(x).

Original entry on oeis.org

8, 4, 0, 8, 5, 4, 5, 9, 1, 7, 1, 7, 3, 3, 2, 8, 3, 4, 5, 4, 4, 0, 8, 8, 1, 0, 8, 4, 9, 9, 8, 3, 6, 3, 3, 2, 7, 1, 4, 6, 7, 7, 0, 4, 4, 2, 2, 4, 1, 4, 9, 1, 2, 8, 3, 0, 8, 5, 4, 5, 0, 1, 9, 1, 4, 0, 6, 9, 5, 5, 9, 6, 1, 8, 0, 7, 7, 1, 7, 8, 4, 3, 4, 2, 2, 6, 1, 1, 6, 7, 5, 2, 1, 3, 2, 4, 1, 8, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.84085459171733283454408810849983633271467704422...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199430 *)

A199431 Decimal expansion of x>0 satisfying x^2+x*sin(x)=3*cos(x).

Original entry on oeis.org

9, 6, 2, 1, 7, 9, 5, 0, 5, 1, 0, 9, 3, 2, 7, 0, 9, 1, 3, 6, 7, 2, 6, 2, 7, 5, 4, 4, 1, 0, 8, 5, 1, 4, 7, 3, 3, 2, 1, 7, 9, 1, 7, 9, 2, 7, 5, 3, 1, 4, 6, 2, 3, 2, 0, 8, 9, 1, 7, 3, 6, 1, 0, 9, 6, 5, 9, 2, 9, 2, 6, 7, 6, 7, 3, 3, 9, 1, 6, 4, 7, 0, 7, 2, 3, 6, 8, 1, 3, 5, 7, 6, 6, 0, 3, 4, 9, 0, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.962179505109327091367262754410851473321791...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .96, .97}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199431 *)

A199432 Decimal expansion of x>0 satisfying x^2+2*x*sin(x)=cos(x).

Original entry on oeis.org

5, 4, 3, 0, 4, 7, 6, 2, 4, 4, 0, 7, 4, 0, 1, 0, 3, 7, 9, 6, 0, 7, 3, 5, 5, 9, 0, 1, 4, 3, 7, 6, 5, 2, 9, 5, 6, 0, 7, 0, 7, 4, 5, 4, 3, 6, 8, 2, 9, 8, 9, 9, 8, 0, 8, 1, 3, 6, 3, 3, 6, 4, 1, 0, 3, 9, 8, 4, 8, 2, 0, 5, 8, 1, 0, 2, 1, 9, 5, 6, 8, 7, 9, 5, 4, 5, 8, 4, 9, 5, 2, 0, 3, 1, 5, 2, 5, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.5430476244074010379607355901437652956070...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .54, .55}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199432 *)

A199433 Decimal expansion of x>0 satisfying x^2+2*x*sin(x)=2*cos(x).

Original entry on oeis.org

7, 2, 6, 8, 9, 2, 4, 0, 7, 8, 5, 4, 3, 3, 6, 1, 9, 4, 4, 6, 0, 0, 2, 4, 4, 2, 9, 5, 3, 5, 9, 5, 5, 4, 1, 6, 7, 1, 9, 6, 6, 2, 1, 6, 2, 2, 0, 9, 2, 1, 9, 2, 4, 4, 9, 3, 6, 0, 6, 5, 3, 8, 0, 7, 7, 8, 3, 9, 8, 5, 4, 9, 1, 8, 8, 7, 6, 5, 2, 9, 7, 9, 1, 8, 1, 5, 7, 2, 9, 8, 1, 4, 5, 9, 1, 1, 4, 5, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.7268924078543361944600244295359554167196621...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199433 *)

A199434 Decimal expansion of x>0 satisfying x^2+2*x*sin(x)=3*cos(x).

Original entry on oeis.org

8, 4, 6, 9, 9, 7, 5, 3, 0, 0, 4, 5, 2, 4, 5, 5, 8, 9, 4, 0, 0, 8, 1, 0, 6, 3, 7, 5, 7, 0, 2, 2, 8, 6, 7, 9, 5, 2, 5, 1, 7, 8, 6, 7, 7, 4, 2, 8, 1, 1, 7, 7, 3, 5, 3, 1, 0, 2, 2, 1, 4, 9, 1, 7, 2, 9, 1, 9, 7, 2, 9, 1, 9, 6, 2, 6, 5, 0, 3, 5, 1, 8, 5, 4, 7, 1, 9, 9, 4, 4, 4, 2, 9, 3, 5, 3, 6, 5, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.8469975300452455894008106375702286795251786774...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199434 *)

A199435 Decimal expansion of x>0 satisfying x^2+3*x*sin(x)=cos(x).

Original entry on oeis.org

4, 7, 7, 9, 4, 7, 5, 5, 4, 1, 2, 1, 6, 8, 7, 3, 5, 6, 5, 1, 9, 7, 2, 3, 3, 4, 5, 9, 4, 0, 4, 1, 4, 5, 3, 0, 7, 3, 8, 9, 7, 9, 5, 8, 2, 3, 4, 9, 4, 4, 2, 7, 6, 5, 2, 2, 0, 6, 4, 1, 4, 3, 8, 0, 0, 6, 5, 8, 9, 7, 3, 8, 7, 1, 7, 2, 3, 1, 9, 7, 8, 3, 0, 5, 1, 3, 0, 5, 2, 4, 2, 6, 6, 3, 6, 2, 4, 0, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.477947554121687356519723345940414530738979582349442...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .47, .48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199435 *)

A199436 Decimal expansion of x>0 satisfying x^2+3*x*sin(x)=2*cos(x).

Original entry on oeis.org

6, 4, 8, 2, 2, 1, 0, 3, 5, 8, 8, 3, 4, 3, 2, 4, 1, 0, 9, 8, 1, 7, 3, 0, 3, 9, 3, 9, 2, 1, 2, 7, 8, 5, 4, 3, 0, 6, 0, 1, 9, 0, 7, 2, 8, 5, 5, 2, 6, 9, 3, 0, 4, 4, 6, 3, 8, 9, 3, 4, 9, 2, 8, 4, 9, 8, 8, 4, 0, 7, 4, 9, 7, 7, 4, 6, 5, 1, 3, 1, 6, 8, 3, 3, 7, 6, 2, 7, 4, 9, 3, 8, 7, 2, 7, 0, 6, 9, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.6482210358834324109817303939212785430601907...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = 3; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199436 *)
Showing 1-10 of 56 results. Next