cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Christoph B. Kassir

Christoph B. Kassir's wiki page.

Christoph B. Kassir has authored 32 sequences. Here are the ten most recent ones:

A359278 Antidiagonal sums of A354967.

Original entry on oeis.org

1, 4, 9, 19, 45, 127, 491, 2597, 18905, 180253, 2176101, 32236029, 571516361, 11885151437, 285237145381, 7794999370341, 239867327549943, 8232788441242931, 312611538663794793, 13040004273788572983
Offset: 1

Author

Christoph B. Kassir, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, my(p=k); for(j=k+1, n, p=prime(p)); p) \\ Andrew Howroyd, Feb 04 2023
  • Python
    from sympy import prime
    def nprime(x, y):
        p = x
        for _ in range(y):
            p = prime(p)
        return p
    def a(n):
        return sum([nprime(k, n-k) for k in range(1, n+1)])
    

Formula

a(n) = Sum_{k=1..n} p(k, n-k+1), where p(n,0) = n and p(n,k) = prime(p(n, k-1)) for k >= 1.

Extensions

a(9)-a(15) from Andrew Howroyd, Feb 03 2023
a(16)-a(20) from Alois P. Heinz, Feb 03 2023

A356983 Decimal expansion of Pi * e^(-Pi/2).

Original entry on oeis.org

6, 5, 3, 0, 7, 2, 9, 4, 9, 8, 9, 4, 9, 1, 2, 1, 3, 1, 3, 8, 9, 5, 3, 1, 8, 8, 1, 1, 1, 7, 2, 2, 5, 4, 3, 1, 5, 6, 7, 6, 0, 0, 1, 4, 5, 3, 6, 8, 3, 6, 9, 1, 1, 6, 9, 4, 6, 7, 9, 7, 8, 2, 7, 5, 5, 1, 9, 2, 2, 5, 8, 5, 7, 6, 0, 9, 0, 8, 5, 2, 2, 3, 4, 3, 7, 7, 3, 8, 5, 3, 9, 5, 3, 1, 8, 2, 4
Offset: 0

Author

Christoph B. Kassir, Sep 07 2022

Keywords

Examples

			0.653072949894912131389531881117225431...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi * Exp[-Pi/2], 10, 100][[1]]
  • PARI
    Pi * exp(-Pi/2)

Formula

Equals Integral_{x=0..Pi} i^tan(x) dx, where i is the imaginary unit.

A356571 a(n) = floor(f(n)), where f(n) = n^4*(15-24*n+10*n^2) + 20*n^5*(1-n)^3 / (1-2*n(1-n)).

Original entry on oeis.org

0, 1, -16, -318, -1895, -6936, -19313, -45055, -92831, -174433, -305249, -504751, -796967, -1210969, -1781345, -2548687, -3560063, -4869505, -6538481, -8636383, -11240999, -14439001, -18326417, -23009119, -28603295, -35235937, -43045313, -52181455, -62806631, -75095833, -89237249
Offset: 0

Author

Christoph B. Kassir, Aug 12 2022

Keywords

Comments

Sandefur shows that if the probability of winning any particular point in a tennis match is p, the fraction of the games won would be f(p).

Programs

  • Mathematica
    a[n_] := Floor[n^4*(15 - 24*n + 10 n^2) + 20*n^5*(1 - n)^3/(1 - 2*n*(1 - n))]; Array[a, 30, 0] (* Amiram Eldar, Aug 12 2022 *)
  • Python
    def a(n):
        return n**4 * (15-24*n+10*n**2) + 20*n**5 * (1-n)**3 // (1-2*n*(1-n))

Formula

a(n) = g(n) + h(n), where g(n) = floor(n^2 * (-4*n^3 + 10*n^2 - 5*n - 5/2) + 1) and h(n) = [1 if n=0; 2 if n=1; -1 if n=3,5,6; 0 if n=4 or n>6]

A354077 Decimal expansion of Pi/2 + sqrt(3) - 1.

Original entry on oeis.org

2, 3, 0, 2, 8, 4, 7, 1, 3, 4, 3, 6, 3, 7, 7, 3, 9, 1, 2, 7, 5, 8, 7, 6, 8, 0, 3, 3, 1, 4, 5, 6, 2, 3, 8, 0, 9, 0, 4, 1, 3, 8, 9, 9, 5, 3, 4, 9, 7, 9, 3, 3, 5, 3, 8, 5, 4, 3, 2, 7, 9, 2, 7, 5, 6, 0, 5, 8, 4, 1, 2, 2, 0, 0, 5, 1, 9, 0, 4, 5, 3, 6, 3, 9, 5, 1, 6, 3, 5, 9, 9, 4, 2, 8
Offset: 1

Author

Christoph B. Kassir, Aug 21 2022

Keywords

Comments

This is the perimeter of a single piece in the shape presented in Talwalkar's video.

Examples

			2.302847134363773912758768033145623809041...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/2)+Sqrt[3]-1, 10, 120][[1]]
  • Maxima
    fpprec: 100$ ev(bfloat((%pi/2)+sqrt(3)-1));
  • PARI
    (Pi/2)+sqrt(3)-1
    

Formula

Equals A019669 + A002194 - 1.

A356418 Decimal expansion of sqrt(4/3 + 1/sqrt(3)).

Original entry on oeis.org

1, 3, 8, 2, 2, 7, 4, 7, 9, 2, 6, 9, 6, 0, 6, 8, 4, 8, 2, 3, 6, 5, 1, 0, 8, 0, 4, 4, 9, 1, 8, 0, 4, 1, 9, 0, 3, 9, 5, 1, 4, 1, 5, 1, 5, 2, 1, 7, 1, 8, 1, 3, 1, 0, 3, 3, 3, 0, 3, 2, 3, 4, 4, 9, 8, 5, 3, 5, 4, 0, 6, 9, 7, 8, 7, 8, 5, 6, 6, 6, 6, 8, 3, 2, 7, 0, 0, 8, 4, 5, 0, 0, 5, 3, 6, 0, 1
Offset: 1

Author

Christoph B. Kassir, Aug 21 2022

Keywords

Comments

This is the radius of the smallest circle containing a system of three unit squares which intersect at the vertices to form an equilateral triangle at the center.

Examples

			1.382274792696068482365108044918041903951415152171813...
		

Crossrefs

Programs

  • Magma
    Sqrt(4/3 + 1/Sqrt(3));
  • Maple
    evalf(sqrt(4/3 + 1/sqrt(3)), 120);
  • Mathematica
    RealDigits[Sqrt[4/3 + 1/Sqrt[3]], 10, 120][[1]]
  • Maxima
    fpprec: 100$ ev(bfloat(sqrt(4/3 + 1/sqrt(3))));
    
  • PARI
    sqrt(4/3 + 1/sqrt(3))
    

A356593 Smallest k such that primorial(k) > n^2.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Author

Christoph B. Kassir, Aug 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1, prod = p = 2}, While[prod < n^2, p = NextPrime[p]; prod *= p; k++]; k]; Array[a, 100] (* Amiram Eldar, Aug 15 2022 *)
  • Python
    from sympy import primorial
    def a(n):
        k = 1
        while True:
            if primorial(k) > n**2:
                return(k)
            k += 1
    for n in range(1, 90):
        print(f'{a(n)}, ', end='')

A356479 Decimal expansion of (sqrt(3)/Pi) * sinh(Pi/sqrt(3)).

Original entry on oeis.org

1, 6, 4, 5, 9, 0, 2, 5, 1, 5, 2, 2, 5, 3, 9, 6, 1, 1, 9, 3, 5, 4, 4, 1, 1, 8, 8, 1, 5, 6, 6, 3, 2, 7, 6, 4, 1, 6, 1, 9, 2, 2, 3, 1, 0, 6, 5, 4, 6, 3, 8, 3, 3, 1, 3, 5, 7, 7, 9, 6, 6, 4, 5, 2, 6, 8, 1, 7, 4, 3, 1, 1, 1, 5, 8, 6, 4, 4, 2, 2, 1, 3, 4, 8, 7, 1, 0, 3, 8, 6, 2, 9, 1, 8, 9, 7, 4, 8, 9, 4, 8, 9, 0, 6, 5, 7
Offset: 1

Author

Christoph B. Kassir, Aug 08 2022

Keywords

Examples

			1.6459025152253961193544118815663276416192231065463...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[3]*Sinh[Pi/Sqrt[3]]/Pi, 10, 100][[1]] (* Amiram Eldar, Aug 09 2022 *)
  • PARI
    print((sqrt(3)/Pi) * sinh(Pi/sqrt(3)))

Formula

Equals Product_{k>=1} (1 + 1/(3*k^2)).

A356476 Decimal expansion of Loschmidt constant in m^-3 (273.15 K, 100 kPa).

Original entry on oeis.org

2, 6, 5, 1, 6, 4, 5, 8, 0, 4, 8, 8, 3, 7, 3, 4, 3, 4, 2, 4, 1, 1, 2, 0, 4, 6, 9, 5, 2, 3, 5, 4, 9, 7, 7, 7, 2, 9, 9, 0, 2, 7, 9, 0, 0, 6, 6, 8, 4, 6, 8, 3, 3, 2, 9, 7, 7, 2, 5, 1, 1, 1, 0, 2, 2, 1, 4, 6, 0, 0, 7, 8, 7, 6, 0, 3, 7, 4, 2, 8, 5, 6, 2, 3, 0, 7, 0, 2, 3, 5, 0, 1, 7, 3, 4, 4, 4
Offset: 26

Author

Christoph B. Kassir, Aug 08 2022

Keywords

Comments

Has period 1910112. - Jianing Song, Sep 18 2022

Examples

			2.651645804 * 10^25 m^-3.
		

Crossrefs

Formula

Equals 10^5 / (273.15 * A070063) = (2/7542485487) * 10^35. - Jianing Song, Sep 18 2022

Extensions

More terms added by Jianing Song, Sep 18 2022

A355703 a(n) = binomial(n, floor(log(n))).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 7, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, 16215, 17296, 18424, 19600, 20825
Offset: 1

Author

Christoph B. Kassir, Jul 14 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n, ilog(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 31 2022
  • Mathematica
    a[n_] := Binomial[n, Floor[Log[n]]]; Array[a, 50] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    a(n) = binomial(n, floor(log(n))); \\ Michel Marcus, Jul 31 2022
  • Python
    from numpy import log
    from math import comb, floor
    for n in range(1, 50):
        x = comb(n, floor(log(n)))
        print("{}, ".format(x), end='')
    

A356381 (Negated) Decimal expansion of value of absolute zero in degrees Celsius.

Original entry on oeis.org

2, 7, 3, 1, 5
Offset: 3

Author

Christoph B. Kassir, Aug 04 2022

Keywords

Examples

			Absolute zero is exactly 0 Kelvin, exactly -273.15 degrees Celsius, and exactly -459.67 degrees Fahrenheit (A356509).
		

References

  • C. P. Aurora, Thermodynamics, McGraw-Hill Education, 2001, p. 43, Table 2.4.

Crossrefs

Cf. A356509 (in Fahrenheit).