A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x).
1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2
Offset: 1
Examples
x=1.17209361728566903968781879581089880...
Programs
-
Mathematica
(* Program 1: A200338 *) a = 1; b = 0; c = 1; f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r] (* A200338 *) (* Program 2: implicit surface of x^2+u*x+v=tan(x) *) f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}]; ListPlot3D[Flatten[t, 1]] (* for A200388 *)
-
PARI
solve(x=1,1.2,x^2+1-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022
Comments