A357734 Array T(n,k), read by descending antidiagonals, whose rows are numbers congruent to p or q mod r, with 0 <= p < q < r, sorted by r, then p, then q.
0, 1, 0, 2, 1, 0, 3, 3, 2, 1, 4, 4, 3, 2, 0, 5, 6, 5, 4, 1, 0, 6, 7, 6, 5, 4, 2, 0, 7, 9, 8, 7, 5, 4, 3, 1, 8, 10, 9, 8, 8, 6, 4, 2, 1, 9, 12, 11, 10, 9, 8, 7, 5, 3, 2, 10, 13, 12, 11, 12, 10, 8, 6, 5, 3, 0, 11, 15, 14, 13, 13, 12, 11, 9, 7, 6, 1, 0
Offset: 1
Examples
T(n,k) begins 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 congruent to 0 or 1 mod 2 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21 congruent to 0 or 1 mod 3 0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21 congruent to 0 or 2 mod 3 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22 congruent to 1 or 2 mod 3 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28 congruent to 0 or 1 mod 4 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 congruent to 0 or 2 mod 4 0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 congruent to 0 or 3 mod 4 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29 congruent to 1 or 2 mod 4 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 congruent to 1 or 3 mod 4 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30 congruent to 2 or 3 mod 4 Row 84 (A047319) with p,q,r = 5,6,7 begins 5, 6, 12, 13, 19, 20, 26, 27, 33, 34, 40, 41, 47, 48, 54, 55, 61, 62, 68, 69. With offset 1 this row has the following formulas. a(k) = (2*r*k + 2*p + 2*q - 3*r - (2*p - 2*q + r)*(-1)^k)/4 = (2*7*k + 2*5 + 2*6 - 3*7 - (2*5 - 2*6 + 7)*(-1)^k)/4 = (14*k + 1 - 5*(-1)^k)/4. G.f.: x*(p + (q - p)*x + (r - q)*x^2) / ((1 + x)*(x - 1)^2) = x*(5 + (6 - 5)*x + (7 - 6)*x^2) / ((1 + x)*(x - 1)^2) = x*(5 + x + x^2) / ((1 + x)*(x - 1)^2). E.g.f.: r - q + ((2*r*x + 2*p + 2*q - 3*r)*exp(x) - (2*p - 2*q + r)*exp(-x))/4 = 7 - 6 + ((2*7*x + 2*5 + 2*6 - 3*7)*exp(x) - (2*5 - 2*6 + 7)*exp(-x))/4 = 1 + ((14*x + 1)*exp(x) - 5*exp(-x))/4. Example of a linear combination of rows. For r=3, the rows are 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15 congruent to 0 or 1 mod 3 steps [1, 2] 0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15 congruent to 0 or 2 mod 3 steps [2, 1] 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16 congruent to 1 or 2 mod 3 steps [1, 2]. L={2,3,7} applied to the above three rows yields 7, 22, 43, 58, 79, 94, 115, 130, 151, 166, 187 congruent to 7 or 22 mod 36. L for steps. 2*[1,2] + 3*[2,1] + 7*[1,2] = [2,4] + [6,3] + [7,14] = [15,21].
Links
- David Lovler, Table of n, a(n) for n = 1..9316 (First 136 antidiagonals).
Crossrefs
The first column is A144629.
Programs
-
PARI
{for(r=2,10,for(p=0,r-2,for(q=p+1,r-1,print1(p," or ",q," mod ",r," "); forstep(i=p,10*r,[q-p,r-q+p],print1(i", "));print)))}
-
PARI
M=[0..19]; {for(r=3,6,for(p=0,r-2,for(q=p+1,r-1,newrow=List(); for(k=1,20,listput(newrow,(2*r*k + 2*p + 2*q - 3*r - (2*p - 2*q + r)*(-1)^k)/4;)); M=matconcat([M;Vec(newrow)])))); T(n,k)=M[n,k];} M
Formula
T(n,k) = T(n,k-1) + T(n,k-2) - T(n,k-3), k > 3.
Each row has the following formulas given p,q,r for the row.
If the row offsets are 1,
a(k) = (2*r*k + 2*p + 2*q - 3*r - (2*p - 2*q + r)*(-1)^k)/4.
G.f.: x*(p + (q - p)*x + (r - q)*x^2) / ((1 + x)*(x - 1)^2).
E.g.f.: r - q + ((2*r*x + 2*p + 2*q - 3*r)*exp(x) - (2*p - 2*q + r)*exp(-x))/4.
If the row offsets are 0,
a(k) = (2*r*k + 2*p + 2*q - r + (2*p - 2*q + r)*(-1)^k)/4.
G.f.: (p + (q - p)*x + (r - q)*x^2) / ((1 + x)*(x - 1)^2).
E.g.f.: ((2*r*x + 2*p + 2*q - r)*exp(x) + (2*p - 2*q + r)*exp(-x))/4.
Comments