cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351581 Four-column table read by rows giving quadruples of integers [w,x,y,z] with w > 0, x > 1, y > 1 and z > 0 such that y^2 - y - x*z = 0 and x^2 = w*y, sorted by y then by x.

Original entry on oeis.org

2, 2, 2, 1, 3, 3, 3, 2, 12, 6, 3, 1, 1, 2, 4, 6, 4, 4, 4, 3, 9, 6, 4, 2, 36, 12, 4, 1, 5, 5, 5, 4, 20, 10, 5, 2, 80, 20, 5, 1, 6, 6, 6, 5, 150, 30, 6, 1, 7, 7, 7, 6, 28, 14, 7, 3, 63, 21, 7, 2, 252, 42, 7, 1, 2, 4, 8, 14, 8, 8, 8, 7, 98, 28, 8, 2, 392, 56, 8, 1
Offset: 1

Views

Author

David Lovler, Feb 13 2022

Keywords

Comments

It is the same to sort by y then by w also to sort by y then by z descending.
When [w,x,y,z] is a row, f(a,b,c) = w*a*b*c + x*(a*b + a*c + b*c) + y*(a+b+c) + z is associative in the following sense. f((a,b,c),d,e) = f(a,f(b,c,d),e) = f(a,b,f(c,d,e)) for all a,b,c,d,e. f(a,b,c) is commutative because of its symmetry.
For each quadruple, the corresponding f(a,b,c) has a unique zero element (call it theta), meaning f(a,b,theta) = f(a,theta,b) = f(theta,a,b) = theta for all a,b. Theta = -y/x = - x/w. f(a,b,c) also has not one but two identity elements (id_1 and id_2), meaning f(a,id_1,id_1) = f(id_1,a,id_1) = f(id_1,id_1,a) = a for all a and f(a,id_2,id_2) = f(id_2,a,id_2) = f(id_2,id_2,a) = a for all a. Id = (-y +- sqrt(y))/x = theta +- sqrt(y)/x. Thus theta = (id_1 + id_2)/2.
The identity elements are integers when y is a square and x divides sqrt(y).

Examples

			Table begins:
  [ w,  x,  y,  z]
  -----------------
  [  2,  2, 2,  1];
  [  3,  3, 3,  2];
  [ 12,  6, 3,  1];
  [  1,  2, 4,  6];
  [  4,  4, 4,  3];
  [  9,  6, 4,  2];
  [ 36, 12, 4,  1];
  [  5,  5, 5,  4];
  [ 20, 10, 5,  2];
  [ 80, 20, 5,  1];
  [  6,  6, 6,  5];
  [150, 30, 6,  1];
  [  7,  7, 7,  6];
  [ 28, 14, 7,  3];
  [ 63, 21, 7,  2];
  [252, 42, 7,  1];
  [  2,  4, 8, 14];
  [  8,  8, 8,  7];
  [ 98, 28, 8,  2];
  [392, 56, 8,  1];
  [  1,  3, 9, 24];
  [  4,  6, 9, 12];
  [  9,  9, 9,  8];
  [ 16, 12, 9,  6];
  [ 36, 18, 9,  4];
  [ 64, 24, 9,  3];
  [144, 36, 9,  2];
  [576, 72, 9,  1];
  ...
For row [1, 2, 4, 6], f(a,b,c) = a*b*c + 2*(a*b + a*c + b*c) + 4*(a+b+c) + 6. Theta = -2; id_1 = -1, id_2 = -3. The associative function f(a,b) = a*b + 2*(a+b) + 2 has theta = -2 and id = -1; f(f(a,b),c) = f(a,b,c). Another associative function g(a,b) = -a*b - 2*(a+b) - 6 with theta = -2 and id = -3 likewise gives g(g(a,b),c) = f(a,b,c).
		

Crossrefs

Programs

  • PARI
    { my(y); for (y = 2, 9, fordiv (y^2-y, x, if(type(w = x^2/y) == "t_INT", print([w, x, y, (y^2-y)/x]) )) ) }

Formula

Looking at A336013, if [X,Y,Z] is a row and f(a,b) = X*a*b + Y*(a+b) + Z is the corresponding associative function with id = -Z/Y and theta = -Y/X, then the composition f(f(a,b),c) = w*a*b*c + x*(a*b + a*c + b*c) + y*(a+b+c) + z = f(a,b,c) gives the quadruple [w,x,y,z]. f(a,b,c) has the same theta as f(a,b); the two identity elements for f(a,b,c) are id and 2*theta - id.
If theta and the identity elements are computed from a quadruple, f(a,b,c) can be written as (a*b*c - theta*(a*b + a*c + b*c) + theta^2*(a+b+c) - theta^3)/(id-theta)^2 + theta. The square in the denominator ensures that f(a,b,c) is the same for either id.
Two parameters are sufficient to describe a row. For n*s > 1, rows are [w,x,y,z] = [n, n*s, n*s^2, (n^2*s^4-n*s^2)/(n*s)] = [n, n*s, n*s^2, n*s^3 - s]. In terms of n and s, theta = -s and id = s*(-1 +- 1/sqrt(n)). Rows with s=1 stand out as having w=x=y; theta = -1 and id = -1 +- 1/sqrt(w).
Showing 1-1 of 1 results.