A351986 Four-column table read by rows, giving quadruples of integers [w,x,y,z] such that y^2 - y - x*z = 0 and x^2 = w*y with w*y != 0 and y != 1, sorted by the absolute value of y with the negatives first, then by x in ascending order.
-4, -2, -1, -1, -1, -1, -1, -2, -1, 1, -1, 2, -4, 2, -1, 1, -18, -6, -2, -1, -2, -2, -2, -3, -2, 2, -2, 3, -18, 6, -2, 1, 2, -2, 2, -1, 2, 2, 2, 1, -48, -12, -3, -1, -12, -6, -3, -2, -3, -3, -3, -4, -3, 3, -3, 4, -12, 6, -3, 2, -48, 12, -3, 1, 12, -6, 3, -1, 3, -3, 3, -2, 3, 3, 3, 2, 12, 6, 3, 1
Offset: 1
Examples
Table begins: [ w, x, y, z] ------------------- [ -4, -2, -1, -1]; [ -1, -1, -1, -2]; [ -1, 1, -1, 2]; [ -4, 2, -1, 1]; [-18, -6, -2, -1]; [ -2, -2, -2, -3]; [ -2, 2, -2, 3]; [-18, 6, -2, 1]; [ 2, -2, 2, -1]; [ 2, 2, 2, 1]; [-48, -12, -3, -1]; [-12, -6, -3, -2]; [ -3, -3, -3, -4]; [ -3, 3, -3, 4]; [-12, 6, -3, 2]; [-48, 12, -3, 1]; [ 12, -6, 3, -1]; [ 3, -3, 3, -2]; [ 3, 3, 3, 2]; [ 12, 6, 3, 1]; ...
Links
- David Lovler, Table of n, a(n) for n = 1..10792
- David Lovler, The first 2698 quadruples for y up to 100.
Programs
-
PARI
{ my(y=1); fordiv (y^2+y, x, print([-((y^2+y)/x)^2/y, -(y^2+y)/x, -y, -x]) ); fordiv (y^2+y, x, print([-(x^2/y), x, -y, (y^2+y)/x]) ); for (y = 2, 6, fordiv (y^2+y, x, if(type(w = -(((y^2+y)/x)^2)/y)=="t_INT", print([w, -(y^2+y)/x, -y, -x]) )); fordiv (y^2+y, x, if(type(w = -x^2/y)=="t_INT", print([w, x, -y, (y^2+y)/x]) )); fordiv (y^2-y, x, if(type(w = (((y^2-y)/x)^2)/y)=="t_INT", print([w, -(y^2-y)/x, y, -x]) )); fordiv (y^2-y, x, if(type(w = x^2/y)=="t_INT", print([w, x, y, (y^2-y)/x]) )) )}
Comments