A327263 Array T(n,k) in which the i-th row consists of numbers > 1 not in array U(i;n,k) = (i*n*k - (i-2)*A319929(n,k))/2 where i >= 1, n >= 1 and k >= 1, read by antidiagonals.
3, 5, 2, 9, 3, 2, 13, 5, 3, 2, 21, 7, 4, 3, 2, 25, 11, 5, 4, 3, 2, 33, 13, 7, 5, 4, 3, 2, 37, 17, 9, 6, 5, 4, 3, 2, 45, 19, 10, 7, 6, 5, 4, 3, 2, 57, 23, 13, 9, 7, 6, 5, 4, 3, 2, 61, 29, 15, 11, 8, 7, 6, 5, 4, 3, 2, 73, 31, 17, 12, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 1
Examples
3 5 9 13 21 25 33 37 45 57 61 73 81 85 93 105 117 121 133 141 145 ... 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 ... 2 3 4 5 7 9 10 13 15 17 21 22 23 25 29 31 34 37 39 41 45 ... 2 3 4 5 6 7 9 11 12 14 15 17 19 21 22 25 27 28 29 31 35 ... 2 3 4 5 6 7 8 9 11 13 14 16 17 18 19 21 23 25 26 28 29 ... 2 3 4 5 6 7 8 9 10 11 13 15 16 18 19 20 21 22 23 25 27 ... 2 3 4 5 6 7 8 9 10 11 12 13 15 17 18 20 21 22 23 24 25 ... 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 20 22 23 24 25 ... 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 24 25 ... 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 ... ...
Crossrefs
Programs
-
Mathematica
row=12;max=200;U[i_,n_,k_]:=(i*n*k-(i-2)If[OddQ@n,If[OddQ@k,n+k-1,k],If[OddQ@k,n,0]])/2;t=Table[c=Union@Flatten@Table[U[i,n,k],{n,2,max},{k,2,max}];Complement[Range[2,max],c][[;;row]],{i,row}];Flatten@Table[t[[m,k-m+1]],{k,row},{m,k}] (* Giorgos Kalogeropoulos, Jun 08 2021 *)
Formula
With one exception there are likely no formulas for the rows of T(n,k) since their creation is based on a sieving process like the familiar prime number sieve. The exception is T(1,k) = 2*T(2,k)-1.
Comments