cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047235 Numbers that are congruent to {2, 4} mod 6.

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196, 200, 202, 206
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 19 ).
Complement of A047273; A093719(a(n)) = 0. - Reinhard Zumkeller, Oct 01 2008
One could prefix an initial term "1" (or not) and define this sequence through a(n+1) = a(n) + (a(n) mod 6). See A001651 for the analog with 3, A235700 (with 5), A047350 (with 7), A007612 (with 9) and A102039 (with 10). Using 4 or 8 yields a constant sequence from that term on. - M. F. Hasler, Jan 14 2014
Nonnegative m such that m^2/6 + 1/3 is an integer. - Bruno Berselli, Apr 13 2017
Numbers divisible by 2 but not by 3. - David James Sycamore, Apr 04 2018
Numbers k for which A276086(k) is of the form 6m+3. - Antti Karttunen, Dec 03 2022

Crossrefs

Cf. A020760, A020832, A093719, A047273 (complement), A120325 (characteristic function).
Equals 2*A001651.
Cf. A007310 ((6*n+(-1)^n-3)/2). - Bruno Berselli, Jun 24 2010
Positions of 3's in A053669 and in A358840.

Programs

  • Magma
    [ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..70] ]; // Klaus Brockhaus, Dec 13 2008
    
  • Maple
    seq(6*floor((n+1)/2) + 3 + (-1)^n, n=1..67); # Gary Detlefs, Mar 02 2010
  • Mathematica
    Flatten[Table[{6n - 4, 6n - 2}, {n, 40}]] (* Alonso del Arte, Oct 27 2014 *)
  • PARI
    a(n)=(n-1)\2*6+3+(-1)^n \\ Charles R Greathouse IV, Jul 01 2013
    
  • PARI
    first(n) = my(v = vector(n, i, 3*i - 1)); forstep(i = 2, n, 2, v[i]--); v \\ David A. Corneth, Oct 20 2017

Formula

a(n) = 2*A001651(n).
n such that phi(3*n) = phi(2*n). - Benoit Cloitre, Aug 06 2003
G.f.: 2*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). a(n) = 3*n - 3/2 - (-1)^n/2. - R. J. Mathar, Nov 22 2008
a(n) = 3*n + 5..n odd, 3*n + 4..n even a(n) = 6*floor((n+1)/2) + 3 + (-1)^n. - Gary Detlefs, Mar 02 2010
a(n) = 6*n - a(n-1) - 6 (with a(1) = 2). - Vincenzo Librandi, Aug 05 2010
a(n+1) = a(n) + (a(n) mod 6). - M. F. Hasler, Jan 14 2014
Sum_{n>=1} 1/a(n)^2 = Pi^2/27. - Dimitris Valianatos, Oct 10 2017
a(n) = (6*n - (-1)^n - 3)/2. - Ammar Khatab, Aug 23 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)). - Amiram Eldar, Dec 11 2021
E.g.f.: 2 + ((6*x - 3)*exp(x) - exp(-x))/2. - David Lovler, Aug 25 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2/sqrt(3) (10 * A020832).
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/sqrt(3) (A020760). (End)

A102039 a(n) = a(n-1) + last digit of a(n-1), starting at 1.

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 24, 28, 36, 42, 44, 48, 56, 62, 64, 68, 76, 82, 84, 88, 96, 102, 104, 108, 116, 122, 124, 128, 136, 142, 144, 148, 156, 162, 164, 168, 176, 182, 184, 188, 196, 202, 204, 208, 216, 222, 224, 228, 236, 242, 244, 248, 256, 262, 264, 268, 276, 282
Offset: 1

Views

Author

Samantha Stones (devilsdaughter2000(AT)hotmail.com), Dec 25 2004

Keywords

Comments

Sequence A001651 is the "base 3" version. In base 4 this rule leads to (1,2,4,4,4...), in base 5 to (1,2,4,8,11,12,14,18,21,22,24,28...) = A235700. - M. F. Hasler, Jan 14 2014
This and the following sequences (none of which is "base"!) could all be defined by a(1) = 1 and a(n+1) = a(n) + (a(n) mod b) with different values of b: A001651 (b=3), A235700 (b=5), A047235 (b=6), A047350 (b=7), A007612 (b=9). Using b=4 or b=8 yields a constant sequence from that term on. - M. F. Hasler, Jan 15 2014

Examples

			28 + 8 = 36, 36 + 6 = 42.
		

Crossrefs

Apart from initial term, same as A002081.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,2,-1},{1,2,4,8,16},60] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    print1(a=1);for(i=1,99,print1(","a+=a%10)) \\ M. F. Hasler, Jan 14 2014
    
  • PARI
    Vec(x*(5*x^4+2*x^3+2*x^2+1)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Colin Barker, Sep 20 2014
    
  • PARI
    a(n) = if(n==1, 1, (-10-(1-I/2)*(-I)^n-(1+I/2)*I^n+5*n)) \\ Colin Barker, Oct 18 2015

Formula

a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>5. G.f.: x*(5*x^4+2*x^3+2*x^2+1) / ((x-1)^2*(x^2+1)). - Colin Barker, Sep 20 2014
a(n) = (-10 - (1-i/2)*(-i)^n - (1+i/2)*i^n + 5*n) for n>1, where i = sqrt(-1). - Colin Barker, Oct 18 2015

A322489 Numbers k such that k^k ends with 4.

Original entry on oeis.org

2, 18, 22, 38, 42, 58, 62, 78, 82, 98, 102, 118, 122, 138, 142, 158, 162, 178, 182, 198, 202, 218, 222, 238, 242, 258, 262, 278, 282, 298, 302, 318, 322, 338, 342, 358, 362, 378, 382, 398, 402, 418, 422, 438, 442, 458, 462, 478, 482, 498, 502, 518, 522, 538, 542, 558
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Also numbers k == 2 (mod 4) such that 2^k and k^2 end with the same digit.
Numbers congruent to {2, 18} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A139544, A235700.
Numbers k such that k^k ends with d: A008592 (d=0), A017281 (d=1), A067870 (d=3), this sequence (d=4), A017329 (d=5), A271346 (d=6), A322490 (d=7), A017377 (d=9).

Programs

  • GAP
    List([1..70], n -> 10*n+3*(-1)^n-5);
    
  • Julia
    [10*n+3*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+3*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=4,[$1..558]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 3 (-1)^n - 5, {n, 1, 60}]
  • Maxima
    makelist(10*n+3*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322489(n)=10*n+3*(-1)^n-5, [1..70]) \\ M. F. Hasler, Dec 14 2018
    
  • PARI
    Vec(2*x*(1 + 8*x + x^2) / ((1 - x)^2*(1 + x)) + O(x^70)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+3*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+3*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: 2*x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 2 + 3*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 3*(-1)^n - 5. Therefore:
a(n) = 10*n - 8 for odd n;
a(n) = 10*n - 2 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(2*Pi/5)*Pi/20 = sqrt(5+2*sqrt(5))*Pi/20. - Amiram Eldar, Feb 27 2023
Showing 1-3 of 3 results.