cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Davide Rotondo

Davide Rotondo's wiki page.

Davide Rotondo has authored 20 sequences. Here are the ten most recent ones:

A384917 Decimal expansion of 1/3645.

Original entry on oeis.org

0, 0, 0, 2, 7, 4, 3, 4, 8, 4, 2, 2, 4, 9, 6, 5, 7, 0, 6, 4, 4, 7, 1, 8, 7, 9, 2, 8, 6, 6, 9, 4, 1, 0, 1, 5, 0, 8, 9, 1, 6, 3, 2, 3, 7, 3, 1, 1, 3, 8, 5, 4, 5, 9, 5, 3, 3, 6, 0, 7, 6, 8, 1, 7, 5, 5, 8, 2, 9, 9, 0, 3, 9, 7, 8, 0, 5, 2, 1, 2, 6, 2, 0, 0, 2
Offset: 0

Author

Davide Rotondo, Jun 12 2025

Keywords

Examples

			0.0002743484224965706447187928669410...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/3645, 10, 120, -1][[1]] (* Amiram Eldar, Jun 12 2025 *)

Formula

Equals Sum_{k>=1} (k*(k+1))/10^(k+3).
Equals A021733/5. - Hugo Pfoertner, Jun 12 2025

A381590 Primes with primitive root -100.

Original entry on oeis.org

3, 7, 19, 23, 31, 43, 47, 59, 67, 71, 83, 107, 131, 151, 163, 167, 179, 191, 199, 223, 227, 263, 283, 307, 311, 347, 359, 367, 379, 383, 419, 431, 439, 443, 467, 479, 487, 491, 499, 503, 523, 563, 571, 587, 599, 619, 631, 647, 659, 683, 719, 727, 743, 787, 811
Offset: 1

Author

Davide Rotondo, Feb 28 2025

Keywords

Comments

Union of long period primes (A006883) of the form 4k-1 and half period primes (A097443) of the form 4k-1.
Complement of A007349 in the union of A007348 and A001913. - Davide Rotondo, May 23 2025

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]], MultiplicativeOrder[-100, #] == # - 1 &]  (* Amiram Eldar, Mar 02 2025 *)
  • PARI
    is(n)=gcd(n,10)==1 && znorder(Mod(-100, n))==n-1 \\ Charles R Greathouse IV, Mar 01 2025
    
  • PARI
    list(lim)=my(v=List([3])); forprime(p=7,lim, if(znorder(Mod(-100, p))==p-1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 01 2025

A380741 Decimal expansion of Sum_{k>=1} prime(k)/2^(k!).

Original entry on oeis.org

1, 8, 2, 8, 1, 2, 5, 4, 1, 7, 2, 3, 2, 5, 1, 3, 4, 2, 7, 7, 3, 4, 3, 7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 7, 5, 4, 8, 0, 2, 2, 9, 7, 8, 8, 9, 0, 4, 0, 5, 6, 0, 9, 9, 9, 0, 5, 2, 2, 2, 0, 4, 4, 6, 0, 9, 5, 7, 1, 8, 4, 3, 4, 0, 5, 5, 1, 9, 6, 7, 5, 4, 9, 6, 1, 5, 1, 4, 2, 1, 6, 1, 2, 0, 1, 2, 2, 0, 0, 0, 5
Offset: 1

Author

Davide Rotondo, Jan 31 2025

Keywords

Comments

Each prime can be recovered from this constant r by prime(k) = floor(r*2^(k!) - floor(r*2^((k-1)!)))*2^((k-1)*(k-1)!) when the binary positions 2^(k!) are far enough apart, which means k>=3.
Is this constant transcendental?

Examples

			1.828125417232513427734375...
		

Crossrefs

Cf. A339764.

Programs

  • PARI
    suminf(k=1, prime(k)/2^(k!)) \\ Michel Marcus, Feb 09 2025

Extensions

More terms from Amiram Eldar, Jan 31 2025

A380509 Numbers of the form i+j+4ij for i,j >= 1 together with numbers of the form -i-j+4ij for i,j >= 2.

Original entry on oeis.org

6, 11, 12, 16, 19, 20, 21, 26, 29, 30, 31, 33, 36, 38, 40, 41, 42, 46, 47, 51, 52, 54, 55, 56, 61, 63, 65, 66, 68, 71, 72, 74, 75, 76, 81, 82, 83, 85, 86, 89, 90, 91, 92, 94, 96, 101, 103, 106, 107, 109, 110, 111, 116, 117, 118, 119, 120, 121, 123, 124, 126, 128, 129, 131, 132, 133
Offset: 1

Author

Davide Rotondo, Jan 26 2025

Keywords

Examples

			1+1+4*1*1 = 6; -2-2+4*2*2 = 12.
		

Crossrefs

Cf. A054520, A380140, A380572 (complement), A380549, A380550.

Programs

  • Maple
    L := 150: S := {}:
    for i to L do for j to L do
    if 4*i*j + i + j <= L then S := `union`(S, {4*i*j+i+j}, {4*i*j+3*i+3*j+2}) fi;
    od; od;
    S; # Peter Bala, Jan 30 2025

Extensions

More terms from Stefano Spezia, Jan 26 2025
Missing terms 111, 121 and 126 added by Peter Bala, Jan 30 2025

A380572 Complement of A380509.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 17, 18, 22, 23, 24, 25, 27, 28, 32, 34, 35, 37, 39, 43, 44, 45, 48, 49, 50, 53, 57, 58, 59, 60, 62, 64, 67, 69, 70, 73, 77, 78, 79, 80, 84, 87, 88, 93, 95, 97, 98, 99, 100, 102, 104, 105, 108, 111, 112, 113, 114, 115, 122
Offset: 1

Author

Davide Rotondo, Jan 27 2025

Keywords

Comments

4*a(n) + 1 or (4*a(n) + 1)/3 is a prime number.
Compare with A380550, numbers not of the form i + 3*j + 4*i*j. See also A006093, numbers not of the form i + j + i*j and A005097, numbers not of the form i + j + 2*i*j. - Peter Bala, Jan 30 2025

Crossrefs

Programs

  • Maple
    S := {}:
    for n from 1 to 150 do
      if isprime(4*n+1) then S := `union`(S, {n}) fi;
      if type((4*n+1)*(1/3), integer) then if isprime((4*n+1)*(1/3)) then S := `union`(S, {n}) fi; fi;
    end do:
    S; # Peter Bala, Jan 30 2025

A378698 Number of compositions of n into parts whose sizes are Fibonacci or Lucas numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 62, 123, 243, 481, 953, 1887, 3737, 7399, 14652, 29014, 57452, 113767, 225279, 446095, 883352, 1749201, 3463746, 6858864, 13581833, 26894570, 53256275, 105457382, 208825335, 413513204, 818833458, 1621443338, 3210760963, 6357907009
Offset: 0

Author

Davide Rotondo, Dec 04 2024

Keywords

Comments

a(n+1)/a(n) approximate the constant r = 1.9801869...

Crossrefs

Programs

  • PARI
    A116470(n) = if(n<6, n, if(n%2, fibonacci(n\2+3), fibonacci(n\2)+fibonacci(n\2+2)))
    a(max_n) = {Vec(1/(1+sum(k=1,max_n-1, -1*x^A116470(k)))+O(x^max_n)); } \\ Thomas Scheuerle, Dec 04 2024

Formula

G.f.: 1/(1 - Sum_{k>=1} x^A116470(k)). - Thomas Scheuerle, Dec 04 2024

A372607 Let a(1) = 2, f(n) = a(1)*a(2)*...*a(n-1) for n >= 1 and a(n) = nextludicnumber(f(n)+1) - f(n) for n >= 2, where nextludicnumber(x) is the smallest ludic number > x.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 13, 25, 17
Offset: 1

Author

Davide Rotondo, May 07 2024

Keywords

Comments

Conjecture: every element is a ludic number.
This is the analog of Buss' conjecture (cf. A067836) for ludic numbers instead of primes, and similar to the idea of ludic Fortunate numbers (A376237) in analogy to the usual Fortunate numbers A005235. - M. F. Hasler, Nov 04 2024

Crossrefs

Cf. A067836, A003309 (ludic numbers), A376237 (ludic Fortunate numbers).

Programs

A347946 Products of nonprimitive roots of n, or 0 if n = 2 or has no primitive roots.

Original entry on oeis.org

0, 0, 1, 2, 4, 24, 48, 0, 4032, 17280, 5400, 0, 518400, 415134720, 0, 0, 1797120, 6467044147200, 39086530560, 0, 0, 1738201006080000, 10247897088, 0, 9632530575360000, 706822057112371200000, 569299069913333760000, 0, 54538738974720000, 0
Offset: 1

Author

Davide Rotondo, Sep 26 2021

Keywords

Comments

If n is a prime p, a(n) == -1 (mod p) for n > 3; if n is a composite c, a(n) == 0 (mod c) for n > 4.

Examples

			a(11) = 5400 because the primitive roots of 11 are {2,6,7,8} and therefore the nonprimitive roots of 11 are {1,3,4,5,9,10} and 1*3*4*5*9*10 = 5400.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 2 || (p = PrimitiveRootList[n]) == {}, 0, (n - 1)!/Times @@ p]; Array[a, 30] (* Amiram Eldar, Sep 26 2021 *)

A345447 Numbers of the form i+j+2*i*j and 2+i+j+2*i*j for i,j >= 1.

Original entry on oeis.org

4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Author

Davide Rotondo, Jun 19 2021

Keywords

Comments

Except for 1 and 2 the complement sequence c is: 3, 5, 8, 11, 20, 23, 35, 41, 50, 53, 56, 65, ...; where 2*c(i) + 1 and 2*c(i) - 3 are a pair of cousin primes. This is a consequence of the sieve of Sundaram.

Examples

			For i,j = 1, 1+1+2*1*1 = 4 and 2+1+1+2*1*1 = 6.
		

Crossrefs

Union of A047845 and A153043, except for 0 and 2.

Programs

  • Python
    def aupto(limit):
        aset = set()
        for i in range(1, limit//3):
            for j in range(i, limit//3):
                t = i + j + 2*i*j
                if t > limit: break
                aset.update([t, t+2])
        return sorted(an for an in aset if an <= limit)
    print(aupto(80)) # Michael S. Branicky, Jul 05 2021

A341930 Decimal expansion of (A249270 + A340469)/2.

Original entry on oeis.org

2, 0, 6, 7, 4, 3, 5, 8, 9, 1, 4, 2, 0, 2, 3, 4, 2, 2, 9, 5, 1, 8, 8, 4, 7, 0, 7, 5, 6, 6, 7, 8, 9, 5, 2, 1, 1, 1, 3, 0, 9, 3, 9, 0, 7, 9, 7, 6, 6, 8, 4, 9, 5, 5, 5, 6, 7, 6, 5, 4, 8, 5, 7, 6, 2, 0, 0, 7, 7, 3, 8, 8, 1, 5, 5, 3, 7, 6, 4, 6, 9, 2, 3, 9, 7, 1, 1, 8, 5, 8, 6, 3, 2, 5, 5, 7, 0, 0, 0, 3, 9, 6, 8
Offset: 1

Author

Davide Rotondo, Feb 23 2021

Keywords

Comments

With this constant r(1) and using the formula r(n+1) = round(r(n))*(r(n) - round(r(n)) + 1.5) it is possible to obtain the sequence of prime numbers because round(r(n)) = prime(n).

Examples

			2.06743589142023422951884707566789...
		

Crossrefs

Programs

  • PARI
    suminf(k=1, (prime(k)-1.5)/prod(i=1, k-1, prime(i))) \\ Michel Marcus, Feb 23 2021

Formula

r(1) = Sum_{k>=1} (prime(k)-1.5)/Product_{i=1..k-1} prime(i).