A247247 Triangular numbers that are the sum of 2 consecutive terms of A130518.
0, 1, 3, 21, 120, 300, 2080, 11781, 29403, 203841, 1154440, 2881200, 19974360, 113123361, 282328203, 1957283461, 11084934960, 27665282700, 191793804840, 1086210502741, 2710915376403, 18793835590881, 106437544333680, 265642041604800, 1841604094101520
Offset: 1
Keywords
Examples
A130518(8)+A130518(9) = 9+12 = 21 = A000217(6), so 21 is in the sequence.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local x; x:= ceil((n^2+2*n)/3); if issqr(1+8*x) then x else NULL fi end proc: seq(f(n),n=0..10^6); # Robert Israel, Nov 30 2014
-
Mathematica
a247247[n_Integer] := Module[{a130518, a000217, s}, a130518[m_] := Table[i, {i, 0, m}, {3}] // Flatten // Accumulate; a000217[m_] := Accumulate[Range[m]]; s[m_] := a130518[m] + Most@PrependTo[a130518[m], 0] // DeleteDuplicates; Intersection[s[n], a000217[n]]]; a247247[50000000] (* Michael De Vlieger, Nov 30 2014 after Jean-François Alcover at A130518 and Harvey P. Dale at A000217 *)
Formula
Empirical G.f.: x^2*(x+1)*(x^4+2*x^3+19*x^2+2*x+1)/((1-x)*(x^2+x+1)*(x^6-98*x^3+1)). - Robert Israel, Nov 30 2014
Extensions
a(7)-a(13) from Michel Marcus, Nov 28 2014
a(14)-a(24) from Michael De Vlieger, Nov 30 2014
a(25) from Hiroaki Yamanouchi, Dec 04 2014
Comments