cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Franck Maminirina Ramaharo

Franck Maminirina Ramaharo's wiki page.

Franck Maminirina Ramaharo has authored 50 sequences. Here are the ten most recent ones:

A386875 a(n) is the maximum number of strong sub-tournaments in an n-tournament.

Original entry on oeis.org

0, 0, 0, 1, 3, 11, 27, 71, 159, 367, 783, 1695, 3519, 7359, 15039, 30847, 62463, 126719, 255231, 514559, 1033215, 2075647, 4160511, 8341503, 16703487, 33452031, 66949119, 133996543, 268091391, 536395775, 1073004543, 2146467839, 4293394431, 8587771903
Offset: 0

Author

Keywords

References

  • K. B. Reid and L. W. Beineke, "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 183 Corollary 6.2.

Crossrefs

Cf. A006918 (the maximum number of 3-cycles in an (n+2)-tournament).
Cf. A038376.

Programs

  • Mathematica
    Table[If[Mod[n, 2] == 1, 2^n  - n*2^((n - 1)/2) - 1, 2^n - 3*n*2^((n - 4)/2) - 1], {n, 0, 20}]
  • Maxima
    a(n) := if mod(n, 2) = 1 then 2^n - n*2^((n - 1)/2) - 1 else 2^n - 3*n*2^((n - 4)/2) - 1$
    makelist(a(n), n, 1, 20);

Formula

a(n) = 2^n - n*2^((n - 1)/2) - 1 if n is odd, and a(n) = 2^n - 3*n*2^((n - 4)/2) - 1 if n is even.
G.f.: x^3/((2*x-1)*(x-1)*(2*x^2-1)^2). - Alois P. Heinz, Aug 06 2025
E.g.f.: cosh(2*x) - cosh(x) - x*cosh(sqrt(2)*x) - sinh(x) + sinh(2*x) - 3*x*sinh(sqrt(2)*x)/(2*sqrt(2)). - Stefano Spezia, Aug 11 2025
a(2n+1) = A286778(n)/2. - R. J. Mathar, Aug 26 2025

A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12).

Original entry on oeis.org

0, 1, 1, 0, 4, 7, 4, 1, 0, 15, 40, 42, 23, 7, 1, 0, 56, 201, 306, 262, 140, 48, 10, 1, 0, 209, 943, 1877, 2189, 1672, 881, 325, 82, 13, 1, 0, 780, 4239, 10412, 15368, 15276, 10841, 5660, 2194, 624, 125, 16, 1, 0, 2911, 18506, 54051, 96501, 118175, 105495
Offset: 1

Author

Keywords

Comments

T(n,k) is the number of ways to assign horizontal or vertical barriers at each interior construction dot of the 4 X 2n barrier-free Celtic shadow diagram CK_4^(2n) such that the resulting design consists of exactly k connected components.
The n-th row is the coefficients in the expansion of the Kauffman bracket polynomial for the shadow of the Celtic link CK_4^(2n).

Examples

			The triangle T(n,k) begins:
  n\k 0    1     2     3     4     5       6     7     8     9   10   11  12 13 14
  1:  0    1     1
  2:  0    4     7     4     1
  3:  0   15    40    42    23      7      1
  4:  0   56   201   306   262    140     48    10     1
  5:  0  209   943  1877  2189   1672    881   325    82    13    1
  6:  0  780  4239 10412 15368  15276  10841  5660  2194   624  125   16   1
  7:  0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19  1
  ...
		

Crossrefs

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten
  • Maxima
    nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$
    p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$
    create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n);

Formula

T(n,1) = A001353(n).
G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2).

A323855 Triangle read by rows: T(n,k) is the denominator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1).

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 12, 12, 2, 1, 60, 4, 4, 1, 1, 20, 45, 8, 6, 2, 1, 140, 90, 120, 3, 3, 1, 1, 280, 5040, 80, 80, 2, 4, 2, 1, 2520, 1008, 378, 16, 144, 4, 12, 1, 1, 2520, 25200, 6048, 15120, 288, 240, 24, 3, 2, 1, 27720, 25200, 21600, 5040, 6048, 40, 240, 1, 2, 1, 1
Offset: 1

Author

Keywords

Comments

See A323854 for the definition of H(n,k).

Examples

			Triangle T(n,k) begins:
  n\k |   0    1    2    3    4    5    6
  ---------------------------------------
    1 |   1
    2 |   2    1
    3 |   6    1    1
    4 |  12   12    2    1
    5 |  60    4    4    3    1
    6 |  20   45    8    6    2    1
    7 | 140   90  120    3    3    1    1
    ...
		

Crossrefs

Cf. A002805 (Column 0), A323854 (numerators).

Programs

  • Mathematica
    H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1)
    Table[Denominator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten
  • Maxima
    H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$
    create_list(denom(H(n, k)), n, 1, 20, k, 0, n - 1);
    
  • PARI
    T(n, k) = denominator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ Jinyuan Wang, Mar 13 2025

Formula

T(n,k) = denominator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}).

A323854 Triangle read by rows: T(n,k) is the numerator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1).

Original entry on oeis.org

1, 3, 1, 11, 2, 1, 25, 35, 5, 1, 137, 15, 17, 3, 1, 49, 203, 49, 35, 7, 1, 363, 469, 967, 28, 23, 4, 1, 761, 29531, 801, 1069, 27, 39, 9, 1, 7129, 6515, 4523, 285, 3013, 75, 145, 5, 1, 7381, 177133, 84095, 341693, 8591, 7513, 605, 44, 11, 1, 83711, 190553, 341747, 139381, 242537, 1903, 10831, 33, 35, 6, 1
Offset: 1

Author

Keywords

Comments

Santmyer (1997) defined the generalized harmonic numbers H(n,k) of rank k by H(n,k) = Sum_{n_0 + n_1 + ... + n_k <= n} 1/(n_0*n_1*...*n_k).
If n >= 0, then the triangle {A323854(n+1,k)/A323855(n+1,k)}_{n,k} is the Riordan array (-log(1 - x)/(x*(1 - x)), -log(1 - x)/x).

Examples

			The triangle H(n,k) begins:
  n\k |   0        1       2       3     4      5     6
  -----------------------------------------------------
    1 |   1
    2 |   3/2      1
    3 |  11/6      2       1
    4 |  25/12    35/12    5/2     1
    5 | 137/60    15/4    17/4     3     1
    6 |  49/20   203/45   49/8    35/6   7/2   1
    7 | 363/140  469/90  967/120  28/3  23/3   4     1
    ...
		

Crossrefs

Cf. A001008 (column 0), A323855 (denominators).

Programs

  • Mathematica
    H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1)
    Table[Numerator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten
  • Maxima
    H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$
    create_list(num(H(n, k)), n, 1, 20, k, 0, n - 1);
    
  • PARI
    T(n, k) = -(-1)^(n+k)*numerator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ Jinyuan Wang, Mar 13 2025

Formula

T(n,k) = numerator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}).

A306210 T(n,k) = binomial(n + k, n) - binomial(n + floor(k/2), n) + 1, square array read by descending antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 8, 7, 5, 1, 1, 4, 10, 17, 11, 6, 1, 1, 4, 16, 26, 31, 16, 7, 1, 1, 5, 19, 47, 56, 51, 22, 8, 1, 1, 5, 27, 65, 112, 106, 78, 29, 9, 1, 1, 6, 31, 101, 176, 232, 183, 113, 37, 10, 1, 1, 6, 41, 131, 296, 407, 435, 295, 157, 46, 11, 1
Offset: 0

Author

Keywords

Comments

There are at most T(n,k) possible values for the number of knots in an interpolatory cubature formula of degree k for an integral over an n-dimensional region.

Examples

			Square array begins:
  1, 1,  1,   1,   1,    1,    1,    1,     1,  ...
  1, 2,  2,   3,   3,    4,    4,    5,     5,  ...
  1, 3,  4,   8,  10,   16,   19,   27,    31,  ...
  1, 4,  7,  17,  26,   47,   65,  101,   131,  ...
  1, 5, 11,  31,  56,  112,  176,  296,   426,  ...
  1, 6, 16,  51, 106,  232,  407,  737,  1162,  ...
  1, 7, 22,  78, 183,  435,  841, 1633,  2794,  ...
  1, 8, 29, 113, 295,  757, 1597, 3313,  6106,  ...
  1, 9, 37, 157, 451, 1243, 2839, 6271, 12376,  ...
  ...
As triangular array, this begins:
  1;
  1, 1;
  1, 2,  1;
  1, 2,  3,  1;
  1, 3,  4,  4,  1;
  1, 3,  8,  7,  5,  1;
  1, 4, 10, 17, 11,  6,  1;
  1, 4, 16, 26, 31, 16,  7, 1;
  1, 5, 19, 47, 56, 51, 22, 8, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] = Binomial[n + k, n] - Binomial[n + Floor[k/2], n] + 1;
    Table[T[k, n - k], {k, 0, n}, {n, 0, 20}] // Flatten
  • Maxima
    T(n, k) := binomial(n + k, n) - binomial(n + floor(k/2), n) + 1$
    create_list(T(k, n - k), n, 0, 20, k, 0, n);

Formula

T(n,k) = A007318(n+k,n) - A046854(n+k,n) + 1.
G.f.: (1 - x - x^2 + x^3 - 2*y + 2*x*y + y^2 - x*y^2 + x^2*y^2)/((1 - x)*(1 - y)*(1 - x - y)*(1 - x^2 - y)).

A322596 Square array read by descending antidiagonals (n >= 0, k >= 0): let b(n,k) = (n+k)!/((n+1)!*k!); then T(n,k) = b(n,k) if b(n,k) is an integer, and T(n,k) = floor(b(n,k)) + 1 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 9, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 21, 26, 21, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 42, 66, 77, 66, 42, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1
Offset: 0

Author

Keywords

Comments

For n >= 1, T(n,k) is the number of nodes in n-dimensional space for Mysovskikh's cubature formula which is exact for any polynomial of degree k of n variables.

Examples

			Array begins:
  1, 1, 1,  1,  1,   1,   1,    1,    1,    1, ...
  1, 1, 2,  2,  3,   3,   4,    4,    5,    5, ...
  1, 1, 2,  4,  5,   7,  10,   12,   15,   19, ...
  1, 1, 3,  5,  9,  14,  21,   30,   42,   55, ...
  1, 1, 3,  7, 14,  26,  42,   66,   99,  143, ...
  1, 1, 4, 10, 21,  42,  77,  132,  215,  334, ...
  1, 1, 4, 12, 30,  66, 132,  246,  429,  715, ...
  1, 1, 5, 15, 42,  99, 215,  429,  805, 1430, ...
  1, 1, 5, 19, 55, 143, 334,  715, 1430, 2702, ...
  1, 1, 6, 22, 72, 201, 501, 1144, 2431, 4862, ...
  ...
As triangular array, this begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  1,  1;
  1, 2,  2,  1,  1;
  1, 3,  4,  3,  1,  1;
  1, 3,  5,  5,  3,  1,  1;
  1, 4,  7,  9,  7,  4,  1,  1;
  1, 4, 10, 14, 14, 10,  4,  1, 1;
  1, 5, 12, 21, 26, 21, 12,  5, 1, 1;
  1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1;
  ...
		

Crossrefs

Programs

  • Maxima
    b(n, k) := (n + k)!/((n + 1)!*k!)$
    T(n, k) := if integerp(b(n, k)) then b(n, k) else floor(b(n, k)) + 1$
    create_list(T(k, n - k), n, 0, 15, k, 0, n);

A322597 a(n) = (4*n^3 - 6*n^2 + 20*n + 3)/3.

Original entry on oeis.org

1, 7, 17, 39, 81, 151, 257, 407, 609, 871, 1201, 1607, 2097, 2679, 3361, 4151, 5057, 6087, 7249, 8551, 10001, 11607, 13377, 15319, 17441, 19751, 22257, 24967, 27889, 31031, 34401, 38007, 41857, 45959, 50321, 54951, 59857, 65047, 70529, 76311, 82401, 88807
Offset: 0

Author

Keywords

Comments

For n >= 2, a(n) gives the number of function evaluations for Dooren and Ridder's degree 5 and 7 cubature rule over an n-dimensional cube, with the exception of a(3) = 45 and a(4) = 97.

Crossrefs

First differences: 2*A093328.

Programs

  • Maple
    [(4*n^3-6*n^2+20*n+3)/3$n=0..50]; # Muniru A Asiru, Jan 23 2019
  • Mathematica
    Table[(4*n^3 - 6*n^2 + 20*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 - 6*n^2 + 20*n + 3)/3, n, 0, 50);

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
G.f.: (1 + 3*x - 5*x^2 + 9*x^3)/((1 - x)^4).
E.g.f.: (1/3)*(3 + 18*x + 6*x^2 + 4*x^3)*exp(x).

A321122 a(n) = n-th row common denominator of A321121.

Original entry on oeis.org

4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0

Author

Keywords

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321121 (Numerators).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}];
    Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([4, 2, 3], makelist(a(n), n, 3, 50));

Formula

Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then a(n) = LCM of denominators of {w(n,k), 0 <= k <= n} for n >= 3.
a(n) = 52*a(n-6) - a(n-12) for n >= 15 (conjectured).
G.f.: (4 + 2*x + 3*x^2 + 8*x^3 + 36*x^4 + 96*x^5 - 164*x^6 + 256*x^7 + 336*x^8 + 32*x^9 - 36*x^10 + 24*x^11 + 2*x^13 - 9*x^14)/(1 - 52*x^6 + x^12) (conjectured).

A321121 Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0

Author

Keywords

Comments

The weights in this quadrature rule are T(n,k)/A321122(n), 0 <= k <= n. For n = 1, 2, 3, we obtain the trapezoid rule, Simpson's rule, and Simpson's 3/8 rule, respectively.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    1,   4,   1;                                       1/3
    3,   9,   9,   3;                                  1/8
   13,  44,  30,  44,  13;                             1/36
   35, 115,  90,  90, 115,  35;                        1/96
   16,  53,  40,  46,  40,  53,  16;                   1/44
  131, 433, 330, 366, 366, 330, 433, 131;              1/360
  179, 592, 450, 504, 486, 504, 450, 592, 179;         1/492
  163, 539, 410, 458, 446, 446, 458, 410, 539, 163;    1/448
  ...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321122 (Common denominators).
Cf. A093735/A093736 (Newton-Cotes formulas), A100640/A100641 (Cotesian numbers), A321118/A321119 (Holladay-Sard best quadrature formulas).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
    Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));

Formula

T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.

A322595 a(n) = (n^3 + 9*n + 14*n + 9)/3.

Original entry on oeis.org

3, 11, 21, 35, 55, 83, 121, 171, 235, 315, 413, 531, 671, 835, 1025, 1243, 1491, 1771, 2085, 2435, 2823, 3251, 3721, 4235, 4795, 5403, 6061, 6771, 7535, 8355, 9233, 10171, 11171, 12235, 13365, 14563, 15831, 17171, 18585, 20075, 21643, 23291, 25021, 26835
Offset: 0

Author

Keywords

Comments

For n >= 6, a(n) is the number of evaluating points on the hypersphere in R^n in Stoyanovas's degree 7 cubature rule.

Crossrefs

First differences: A027693.

Programs

  • Magma
    [(n^3 + 9*n + 14*n + 9)/3: n in [0..45]]; // Vincenzo Librandi, Jun 05 2019
  • Mathematica
    Table[(n^3 + 9*n + 14*n + 9)/3, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{3,11,21,35},50] (* Harvey P. Dale, Aug 19 2020 *)
  • Maxima
    makelist((n^3 + 9*n + 14*n + 9)/3, n, 0, 50);
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = 2*binomial(n + 1, 3) + 6*binomial(n + 1, 2) + 2*binomial(n + 1, 1) + 1.
G.f.: (3 - x - 5*x^2 + 5*x^3)/(1 - x)^4. [Corrected by Georg Fischer, May 23 2019]
E.g.f.: (1/3)*(9 + 24*x + 12*x^2 + x^3)*exp(x).