cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323855 Triangle read by rows: T(n,k) is the denominator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1).

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 12, 12, 2, 1, 60, 4, 4, 1, 1, 20, 45, 8, 6, 2, 1, 140, 90, 120, 3, 3, 1, 1, 280, 5040, 80, 80, 2, 4, 2, 1, 2520, 1008, 378, 16, 144, 4, 12, 1, 1, 2520, 25200, 6048, 15120, 288, 240, 24, 3, 2, 1, 27720, 25200, 21600, 5040, 6048, 40, 240, 1, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

See A323854 for the definition of H(n,k).

Examples

			Triangle T(n,k) begins:
  n\k |   0    1    2    3    4    5    6
  ---------------------------------------
    1 |   1
    2 |   2    1
    3 |   6    1    1
    4 |  12   12    2    1
    5 |  60    4    4    3    1
    6 |  20   45    8    6    2    1
    7 | 140   90  120    3    3    1    1
    ...
		

Crossrefs

Cf. A002805 (Column 0), A323854 (numerators).

Programs

  • Mathematica
    H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1)
    Table[Denominator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten
  • Maxima
    H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$
    create_list(denom(H(n, k)), n, 1, 20, k, 0, n - 1);
    
  • PARI
    T(n, k) = denominator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ Jinyuan Wang, Mar 13 2025

Formula

T(n,k) = denominator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}).
Showing 1-1 of 1 results.