cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322594 a(n) = (4*n^3 + 12*n^2 - 4*n + 3)/3.

Original entry on oeis.org

1, 5, 25, 69, 145, 261, 425, 645, 929, 1285, 1721, 2245, 2865, 3589, 4425, 5381, 6465, 7685, 9049, 10565, 12241, 14085, 16105, 18309, 20705, 23301, 26105, 29125, 32369, 35845, 39561, 43525, 47745, 52229, 56985, 62021, 67345, 72965, 78889, 85125, 91681, 98565
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of evaluation points on the n-dimensional cube in Lyness's degree 7 cubature rule.

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Crossrefs

Programs

  • Mathematica
    Table[(4*n^3 + 12*n^2 - 4*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 + 12*n^2 - 4*n + 3)/3, n, 0, 50);

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = a(n-1) + 4*A028387(n-1), n >= 1.
a(n) = 8*binomial(n, 3) + 16*binomial(n, 2) + 4*binomial(n, 1) + 1.
G.f.: (1 + x + 11*x^2 - 5*x^3)/(1 - x)^4
E.g.f.: (1/3)*(3 + 12*x + 24*x^2 + 4*x^3)*exp(x).

A321124 a(n) = (4*n^3 - 6*n^2 + 14*n + 3)/3.

Original entry on oeis.org

1, 5, 13, 33, 73, 141, 245, 393, 593, 853, 1181, 1585, 2073, 2653, 3333, 4121, 5025, 6053, 7213, 8513, 9961, 11565, 13333, 15273, 17393, 19701, 22205, 24913, 27833, 30973, 34341, 37945, 41793, 45893, 50253, 54881, 59785, 64973, 70453, 76233, 82321, 88725
Offset: 0

Views

Author

Keywords

Comments

For n >= 5, a(n) is the number of evaluation points on the n-dimensional cube in Phillips-Dobrodeev's degree 7 cubature rule.

Crossrefs

Programs

  • Mathematica
    Table[(4*n^3 - 6*n^2 + 14*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 - 6*n^2 + 14*n + 3)/3, n, 0, 50);

Formula

a(n) = 8*binomial(n, 3) + 4*binomial(n, 2) + 4*binomial(n, 1) + 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A128445(n+1), n >= 1.
E.g.f.: (1/3)*(3 + 12*x + 6*x^2 + 4*x^3)*exp(x).
G.f.: (1 + x - x^2 + 7*x^3)/(1 - x)^4.

A322597 a(n) = (4*n^3 - 6*n^2 + 20*n + 3)/3.

Original entry on oeis.org

1, 7, 17, 39, 81, 151, 257, 407, 609, 871, 1201, 1607, 2097, 2679, 3361, 4151, 5057, 6087, 7249, 8551, 10001, 11607, 13377, 15319, 17441, 19751, 22257, 24967, 27889, 31031, 34401, 38007, 41857, 45959, 50321, 54951, 59857, 65047, 70529, 76311, 82401, 88807
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) gives the number of function evaluations for Dooren and Ridder's degree 5 and 7 cubature rule over an n-dimensional cube, with the exception of a(3) = 45 and a(4) = 97.

Crossrefs

First differences: 2*A093328.

Programs

  • Maple
    [(4*n^3-6*n^2+20*n+3)/3$n=0..50]; # Muniru A Asiru, Jan 23 2019
  • Mathematica
    Table[(4*n^3 - 6*n^2 + 20*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 - 6*n^2 + 20*n + 3)/3, n, 0, 50);

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
G.f.: (1 + 3*x - 5*x^2 + 9*x^3)/((1 - x)^4).
E.g.f.: (1/3)*(3 + 18*x + 6*x^2 + 4*x^3)*exp(x).
Showing 1-3 of 3 results.