A007773 For any circular arrangement of 0..n-1, let S = sum of squares of every sum of two contiguous numbers; then a(n) = # of distinct values of S.
1, 1, 1, 3, 8, 21, 43, 69, 102, 145, 197, 261, 336, 425, 527, 645, 778, 929, 1097, 1285, 1492, 1721, 1971, 2245, 2542, 2865, 3213, 3589, 3992, 4425, 4887, 5381, 5906, 6465, 7057, 7685, 8348, 9049, 9787, 10565, 11382, 12241, 13141, 14085, 15072, 16105
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- K. S. Brown, The Dartboard Sequence
- H. L. Montgomery, Kevin Brown's enumeration problem, Manuscript, Oct 04 1994. (Annotated scanned copy)
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1-2*x +4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2)) )); // G. C. Greubel, Mar 15 2019 -
Mathematica
Drop[CoefficientList[Series[x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9 -4*x^10)/((1-x)^3*(1-x^2)), {x, 0, 60}], x], 1] (* G. C. Greubel, Mar 15 2019 *)
-
PARI
a(n)=polcoeff(x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10+O(x^n))/(1-x)^3/(1-x^2),n)
-
PARI
A007773(n)=if(n>5,(n^3-max(16*n,116)+31)\6,n>3,5*n-17,1) \\ M. F. Hasler, Mar 15 2019
-
Sage
a=(x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2))).series(x, 60).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 15 2019
Formula
For n >= 7, a(n) = (n^3-16*n+27)/6 (n odd); (n^3-16*n+30)/6 (n even).
G.f.: x*(1-2*x+4*x^3+3*x^5-10*x^7+2*x^8+8*x^9-4*x^10)/((1-x)^3*(1-x^2)). - Michael Somos, May 03 2002
a(2n) = A322594(n-4), n>=4. - R. J. Mathar, Mar 18 2019
Extensions
More terms from David W. Wilson, Oct 27 2000
Comments