A321122
a(n) = n-th row common denominator of A321121.
Original entry on oeis.org
4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II. The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), pp. 9-74.
-
s = -2 + Sqrt[3];
e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}];
Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
-
s : -2 + sqrt(3)$
e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
append([4, 2, 3], makelist(a(n), n, 3, 50));
A321118
T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.
Original entry on oeis.org
0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
3, 10, 3; 1/8
4, 11, 11, 4; 1/10
11, 32, 26, 32, 11; 1/28
15, 43, 37, 37, 43, 15; 1/38
41, 118, 100, 106, 100, 118, 41; 1/104
56, 161, 137, 143, 143, 137, 161, 56; 1/142
153, 440, 374, 392, 386, 392, 374, 440, 153; 1/388
209, 601, 511, 535, 529, 529, 535, 511, 601, 209; 1/530
...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
- Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), p. 9-74.
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
-
alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0;
T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
-
(b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);
Showing 1-2 of 2 results.
Comments