A181629 Positive integers k = p_1^{r_1} ... p_n^{r_n} such that sum_{i=1..n} p_i^{-r_i} >= 1 (Non-Hyperbolic Integers).
1, 30, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1050, 1110, 1218, 1230, 1290, 1302, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 2010, 2130, 2190, 2310, 2370, 2490, 2670, 2730, 2910, 3030, 3090, 3210, 3270, 3390, 3570, 3630, 3810
Offset: 1
Keywords
Examples
a(2) = 30, since 30 = 2*3*5 and 1/2 + 1/3 + 1/5 = 31/30 >= 1.
Crossrefs
Cf. A028236 (if n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j). - Klaus Brockhaus, Nov 06 2010
Programs
-
Magma
[1] cat [ k: k in [2..4000] | &+[ f[i, 1]^-f[i, 2]: i in [1..#f] ] ge 1 where f is Factorization(k) ]; // Klaus Brockhaus, Nov 06 2010
-
Mathematica
DeleteCases[ Table[k; A = FactorInteger[k]; If[Sum[1/A[[j]][[1]]^A[[j]][[2]], {j, 1, Length[A]}] >= 1, k, 0], {k, 1, 3900}], 0] fQ[n_] := Block[{fi = Transpose@ FactorInteger@ n}, Plus @@ (1/(First@fi ^ Last@fi)) >= 1]; Select[Range@ 3900, fQ] (* Robert G. Wilson v, Nov 04 2010 *)
Comments