cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A244630 a(n) = 17*n^2.

Original entry on oeis.org

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).

Programs

Formula

G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A244636 a(n) = 30*n^2.

Original entry on oeis.org

0, 30, 120, 270, 480, 750, 1080, 1470, 1920, 2430, 3000, 3630, 4320, 5070, 5880, 6750, 7680, 8670, 9720, 10830, 12000, 13230, 14520, 15870, 17280, 18750, 20280, 21870, 23520, 25230, 27000, 28830, 30720, 32670, 34680, 36750, 38880, 41070, 43320, 45630, 48000, 50430
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized 17-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [30*n^2: n in [0..40]];
    
  • Maple
    A244636:=n->30*n^2: seq(A244636(n), n=0..50); # Wesley Ivan Hurt, Jul 04 2014
  • Mathematica
    Table[30 n^2, {n, 0, 40}]
    CoefficientList[Series[30x (1+x)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[ {3,-3,1},{0,30,120},50] (* Harvey P. Dale, Dec 02 2021 *)
  • PARI
    a(n)=30*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 30*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 30*A000290(n) = 15*A001105(n) = 10*A033428(n) = 6*A033429(n) = 5*A033581(n) = 3*A033583(n) = 2*A064761(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 30*x*(1 + x)*exp(x).
a(n) = n*A249674(n) = A330451(3*n). (End)

A022272 a(n) = n*(15*n - 1)/2.

Original entry on oeis.org

0, 7, 29, 66, 118, 185, 267, 364, 476, 603, 745, 902, 1074, 1261, 1463, 1680, 1912, 2159, 2421, 2698, 2990, 3297, 3619, 3956, 4308, 4675, 5057, 5454, 5866, 6293, 6735, 7192, 7664, 8151, 8653, 9170, 9702, 10249, 10811, 11388, 11980, 12587, 13209, 13846, 14498
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = 15*n + a(n-1) - 8 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(7 + 8*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
From Bruno Berselli, Mar 31 2015: (Start)
a(n) = A022273(-n).
a(n) + a(-n) = A064761(n). (End)
a(n) = A000217(8*n-1) - A000217(7*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(15*x + 14)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A226489 a(n) = n*(15*n-11)/2.

Original entry on oeis.org

0, 2, 19, 51, 98, 160, 237, 329, 436, 558, 695, 847, 1014, 1196, 1393, 1605, 1832, 2074, 2331, 2603, 2890, 3192, 3509, 3841, 4188, 4550, 4927, 5319, 5726, 6148, 6585, 7037, 7504, 7986, 8483, 8995, 9522, 10064, 10621, 11193, 11780, 12382, 12999, 13631, 14278, 14940
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th 9-gonal (nonagonal) number and n-th 10-gonal (decagonal) number.
Sum of reciprocals of a(n), for n > 0: 0.614629940137818703272919217222307...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=15: see list in A226488.

Programs

  • Magma
    [n*(15*n-11)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,19]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (15 n - 11)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 13 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(15*n-11)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(2+13*x)/(1-x)^3.
a(n) + a(-n) = A064761(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 15*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A022273 a(n) = n*(15*n + 1)/2.

Original entry on oeis.org

0, 8, 31, 69, 122, 190, 273, 371, 484, 612, 755, 913, 1086, 1274, 1477, 1695, 1928, 2176, 2439, 2717, 3010, 3318, 3641, 3979, 4332, 4700, 5083, 5481, 5894, 6322, 6765, 7223, 7696, 8184, 8687, 9205, 9738, 10286, 10849, 11427, 12020, 12628, 13251, 13889
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 7) for n>6.
a(n) = 15*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(8+7*x)/(1-x)^3. - Vincenzo Librandi, Mar 31 2015
a(n) = 3*a(n-1) - 3*a(n-2) - a(n-3) for n>2. - Vincenzo Librandi, Mar 31 2015
a(n) = A022272(-n). - Bruno Berselli, Mar 31 2015
a(n) + a(-n) = A064761(n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(8*n) - A000217(7*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(15*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A303302 a(n) = 34*n^2.

Original entry on oeis.org

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
Offset: 0

Views

Author

Omar E. Pol, May 13 2018

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

Programs

  • Magma
    [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
  • Mathematica
    Table[34 n^2, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{0,34,136},50] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    a(n) = 34*n^2;
    
  • PARI
    concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
    

Formula

a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Showing 1-9 of 9 results.