cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A237616 a(n) = n*(n + 1)*(5*n - 4)/2.

Original entry on oeis.org

0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0

Views

Author

Bruno Berselli, Feb 10 2014

Keywords

Comments

Also 17-gonal (or heptadecagonal) pyramidal numbers.
This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  16;
   3,  32,  31;
   4,  48,  62,  46;
   5,  64,  93,  92,  61;
   6,  80, 124, 138, 122,  76;
   7,  96, 155, 184, 183, 152,  91;
   8, 112, 186, 230, 244, 228, 182, 106;
   9, 128, 217, 276, 305, 304, 273, 212, 121;
  10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

Crossrefs

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(5*n-4)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(5n-4)/2, {n, 0, 40}]
    CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 14*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.
a(n) = A104728(A001844(n-1)) for n>0.
Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 16*x + 5*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A051869 17-gonal (or heptadecagonal) numbers: a(n) = n*(15*n-13)/2.

Original entry on oeis.org

0, 1, 17, 48, 94, 155, 231, 322, 428, 549, 685, 836, 1002, 1183, 1379, 1590, 1816, 2057, 2313, 2584, 2870, 3171, 3487, 3818, 4164, 4525, 4901, 5292, 5698, 6119, 6555, 7006, 7472, 7953, 8449, 8960, 9486, 10027, 10583, 11154, 11740, 12341
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 17,... and the parallel line from 1, in the direction 1, 48,..., in the square spiral whose vertices are the generalized 17-gonal numbers. - Omar E. Pol, Jul 18 2012

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Crossrefs

Cf. A002378.

Programs

Formula

G.f.: x*(1+14*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = a(n-1) + 15*n - 14 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A226489(n) - n. - Bruno Berselli, Jun 11 2013
a(15*a(n) + 106*n + 1) = a(15*a(n) + 106*n) + a(15*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 15*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
Product_{n>=2} (1 - 1/a(n)) = 15/17. - Amiram Eldar, Jan 22 2021

A152773 3 times heptagonal numbers: a(n) = 3*n*(5*n-3)/2.

Original entry on oeis.org

0, 3, 21, 54, 102, 165, 243, 336, 444, 567, 705, 858, 1026, 1209, 1407, 1620, 1848, 2091, 2349, 2622, 2910, 3213, 3531, 3864, 4212, 4575, 4953, 5346, 5754, 6177, 6615, 7068, 7536, 8019, 8517, 9030, 9558, 10101, 10659, 11232, 11820, 12423, 13041, 13674, 14322, 14985
Offset: 0

Views

Author

Omar E. Pol, Dec 13 2008

Keywords

Comments

Also the number of 6-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jun 25 2017

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=15: see Comments lines of A226492.
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A028896 (5-cycles).

Programs

Formula

a(n) = (15*n^2 - 9*n)/2 = 3*A000566(n).
a(n) = a(n-1) + 15*n - 12 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+4*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(0)=0, a(1)=3, a(2)=21, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 08 2012
a(n) = n + A226489(n). - Bruno Berselli, Jun 11 2013
Sum_{n>=1} 1/a(n) = tan(Pi/10)*Pi/9 - sqrt(5)*log(phi)/9 + 5*log(5)/18, where phi is the golden ratio (A001622). - Amiram Eldar, May 20 2023
E.g.f.: 3*exp(x)*x*(2 + 5*x)/2. - Elmo R. Oliveira, Dec 24 2024
Showing 1-4 of 4 results.