A173519
Number of partitions of n*(n+1)/2 into parts not greater than n.
Original entry on oeis.org
1, 1, 2, 7, 23, 84, 331, 1367, 5812, 25331, 112804, 511045, 2348042, 10919414, 51313463, 243332340, 1163105227, 5598774334, 27119990519, 132107355553, 646793104859, 3181256110699, 15712610146876, 77903855239751, 387609232487489, 1934788962992123
Offset: 0
-
Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* Alonso del Arte, Aug 12 2011 *)
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
-
a(n)=
{
local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);
gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */
return( polcoeff( truncate(gf), tr ) );
} /* Joerg Arndt, Aug 14 2011 */
A104383
Number of distinct partitions of triangular numbers n*(n+1)/2.
Original entry on oeis.org
1, 1, 2, 4, 10, 27, 76, 222, 668, 2048, 6378, 20132, 64234, 206848, 671418, 2194432, 7215644, 23853318, 79229676, 264288462, 884987529, 2973772212, 10024300890, 33888946600, 114872472064, 390334057172, 1329347719190, 4536808055808, 15513418629884
Offset: 0
- Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
-
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> b(n*(n+1)/2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 24 2016
-
Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* Harvey P. Dale, Dec 29 2012 *)
-
{a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)}
A126683
Number of partitions of the n-th triangular number n(n+1)/2 into distinct odd parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 16, 33, 68, 144, 312, 686, 1523, 3405, 7652, 17284, 39246, 89552, 205253, 472297, 1090544, 2525904, 5867037, 13663248, 31896309, 74628130, 174972341, 411032475, 967307190, 2280248312, 5383723722, 12729879673, 30141755384, 71462883813
Offset: 0
The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
Sequences
A066655 and
A104383 do the same thing for triangular numbers, with partitions or distinct partitions. Sequences
A072213 and
A072243 are analogs for squares rather than triangular numbers.
-
g:= mul(1+x^(2*j+1),j=0..900): seq(coeff(g,x,n*(n+1)/2),n=0..40); # Emeric Deutsch, Feb 27 2007
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2n, 0, b(n-2*i+1, i-1))))
end:
a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2018
-
a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)
A267709
Number of partitions of pentagonal numbers.
Original entry on oeis.org
1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308
Offset: 0
a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.
-
Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}]
-
a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016
-
from sympy.ntheory import npartitions
print([npartitions(n*(3*n - 1)//2) for n in range(51)]) # Indranil Ghosh, Apr 11 2017
A137736
Number of set partitions of [n*(n-1)/2].
Original entry on oeis.org
1, 1, 1, 5, 203, 115975, 1382958545, 474869816156751, 6160539404599934652455, 3819714729894818339975525681317, 139258505266263669602347053993654079693415, 359334085968622831041960188598043661065388726959079837
Offset: 0
-
seq(combinat[bell](n*(n-1)/2), n=0..12);
-
a[n_]=BellB[n(n-1)/2];Array[a,12,0] (* James C. McMahon, Jun 02 2025 *)
A336605
a(n) is the number of partitions of the n-th tetrahedral number (A000292).
Original entry on oeis.org
1, 1, 5, 42, 627, 14883, 526823, 26543660, 1844349560, 172389800255, 21248279009367, 3397584011986773, 695143713458946040, 179855916453958267598, 58248417552751868050007, 23402165235974892374954302, 11571309261543787320061392679
Offset: 0
Showing 1-6 of 6 results.
Comments