cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A173519 Number of partitions of n*(n+1)/2 into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 23, 84, 331, 1367, 5812, 25331, 112804, 511045, 2348042, 10919414, 51313463, 243332340, 1163105227, 5598774334, 27119990519, 132107355553, 646793104859, 3181256110699, 15712610146876, 77903855239751, 387609232487489, 1934788962992123
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - Alois P. Heinz, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* Alonso del Arte, Aug 12 2011 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    a(n)=
    {
        local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);
        gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */
        return( polcoeff( truncate(gf), tr ) );
    } /* Joerg Arndt, Aug 14 2011 */

Formula

a(n) = A026820(A000217(n),n).
a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - Vaclav Kotesovec, Sep 07 2014

Extensions

More terms from D. S. McNeil, Aug 12 2011

A104383 Number of distinct partitions of triangular numbers n*(n+1)/2.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 76, 222, 668, 2048, 6378, 20132, 64234, 206848, 671418, 2194432, 7215644, 23853318, 79229676, 264288462, 884987529, 2973772212, 10024300890, 33888946600, 114872472064, 390334057172, 1329347719190, 4536808055808, 15513418629884
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2005

Keywords

Comments

Equals row sums of triangle A104382. Asymptotics: a(n) ~ exp(Pi*sqrt((n^2+n)/6))/(2*6^(1/4))/(n^2+n)^(3/4).

References

  • Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n*(n+1)/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 24 2016
  • Mathematica
    Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* Harvey P. Dale, Dec 29 2012 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)}

Formula

Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
a(n) = A000009(A000217(n)). - Alois P. Heinz, Nov 24 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 05 2016

A126683 Number of partitions of the n-th triangular number n(n+1)/2 into distinct odd parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 33, 68, 144, 312, 686, 1523, 3405, 7652, 17284, 39246, 89552, 205253, 472297, 1090544, 2525904, 5867037, 13663248, 31896309, 74628130, 174972341, 411032475, 967307190, 2280248312, 5383723722, 12729879673, 30141755384, 71462883813
Offset: 0

Views

Author

Moshe Shmuel Newman, Feb 15 2007

Keywords

Comments

Also the number of self-conjugate partitions of the n-th triangular number.

Examples

			The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
		

Crossrefs

Sequences A066655 and A104383 do the same thing for triangular numbers, with partitions or distinct partitions. Sequences A072213 and A072243 are analogs for squares rather than triangular numbers.
Cf. A000217.

Programs

  • Maple
    g:= mul(1+x^(2*j+1),j=0..900): seq(coeff(g,x,n*(n+1)/2),n=0..40); # Emeric Deutsch, Feb 27 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2n, 0, b(n-2*i+1, i-1))))
        end:
    a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2018
  • Mathematica
    a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)

Extensions

More terms from Emeric Deutsch, Feb 27 2007
a(0)=1 prepended by Alois P. Heinz, Jan 31 2018

A267709 Number of partitions of pentagonal numbers.

Original entry on oeis.org

1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2016

Keywords

Examples

			a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}]
  • PARI
    a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016
    
  • Python
    from sympy.ntheory import npartitions
    print([npartitions(n*(3*n - 1)//2) for n in range(51)]) # Indranil Ghosh, Apr 11 2017

Formula

a(n) = A000041(A000326(n)).
a(n) ~ exp((Pi*sqrt(n*(3*n - 1)))/sqrt(3))/(2*sqrt(3)*n*(3*n - 1)).
a(n) = [x^(n*(3*n-1)/2)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017

A137736 Number of set partitions of [n*(n-1)/2].

Original entry on oeis.org

1, 1, 1, 5, 203, 115975, 1382958545, 474869816156751, 6160539404599934652455, 3819714729894818339975525681317, 139258505266263669602347053993654079693415, 359334085968622831041960188598043661065388726959079837
Offset: 0

Views

Author

Thomas Wieder, Feb 09 2008

Keywords

Comments

Among n persons we have (n^2-n)/2 undirected relations. We can set partition these relations into (up to) a(n) = Bell((n^2-n)/2) sets.
The number of graphs on n labeled nodes is A006125(n) = Sum_{k=0..(n^2-n)/2} binomial((n^2-n)/2,k).
See also A066655 which equals A066655(n) = Sum_{k=0..(n^2-n)/2} P((n^2-n)/2,k) where P(n) is the number of integer partitions of n.
See also A135084 = A000110(2^n-1) and A135085 = A000110(2^n).

Examples

			a(4) = Bell(6) = 203.
		

Crossrefs

Programs

  • Maple
    seq(combinat[bell](n*(n-1)/2), n=0..12);
  • Mathematica
    a[n_]=BellB[n(n-1)/2];Array[a,12,0] (* James C. McMahon, Jun 02 2025 *)

Formula

a(n) = Bell(n*(n-1)/2) = A000110(n*(n-1)/2).
a(n) = Sum_{k=0..(n^2-n)/2} Stirling2((n^2-n)/2,k).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 24 2024

A336605 a(n) is the number of partitions of the n-th tetrahedral number (A000292).

Original entry on oeis.org

1, 1, 5, 42, 627, 14883, 526823, 26543660, 1844349560, 172389800255, 21248279009367, 3397584011986773, 695143713458946040, 179855916453958267598, 58248417552751868050007, 23402165235974892374954302, 11571309261543787320061392679
Offset: 0

Views

Author

Robert Bilinski, Sep 13 2020

Keywords

Crossrefs

Programs

  • PARI
    a(n) = numbpart(n*(n+1)*(n+2)/6); \\ Michel Marcus, Sep 14 2020

Formula

a(n) = p(n*(n+1)*(n+2)/6).
a(n) = A000041(A000292(n)).
Showing 1-6 of 6 results.