cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Bilinski

Robert Bilinski's wiki page.

Robert Bilinski has authored 10 sequences.

A339470 Decimal expansion of log(phi)^2, where phi is the golden ratio (A002390^2).

Original entry on oeis.org

2, 3, 1, 5, 6, 4, 8, 2, 0, 5, 7, 7, 1, 9, 4, 3, 9, 2, 4, 9, 6, 9, 2, 9, 0, 7, 1, 2, 3, 1, 5, 3, 2, 7, 6, 0, 0, 1, 6, 4, 0, 6, 3, 5, 0, 0, 4, 9, 2, 9, 8, 8, 7, 0, 8, 1, 5, 3, 0, 1, 2, 2, 8, 6, 8, 9, 7, 9, 5, 3, 4, 5, 5, 6, 6, 9, 6, 1, 8, 1, 2, 9, 8, 5, 0, 5, 4
Offset: 0

Author

Robert Bilinski, Dec 06 2020

Keywords

Examples

			0.2315648205771943924969290712315327600164063500492988708153012286...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[GoldenRatio]^2, 10, 100][[1]] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    asinh(1/2)^2 \\ Michel Marcus, Dec 06 2020

Formula

Equals arcsinh(1/2)^2 = A002390^2.
Equals (1/2)*Sum_{k>=1} ((k!)^2*(-1)^(k+1))/((2*k)!*k^2) = A086467/2.
Equals (1/3)*(zeta(2) - Sum_{k>=1} ((k!)^2*(-1)^k)/((2*k)!*(2*k+1)^2)).
Equals (1/2)*Sum_{k>=1} (-1)^(k+1)/A002736(k).

A337789 Numbers k such that trajectory of k under repeated calculation of fecundity (x -> A070562(x)) eventually reaches 0.

Original entry on oeis.org

0, 1, 5, 10, 15, 18, 20, 21, 22, 24, 27, 30, 35, 40, 42, 44, 46, 48, 50, 51, 55, 59, 60, 63, 64, 66, 67, 69, 70, 74, 75, 77, 80, 83, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 115, 118, 120, 121, 122, 124, 127
Offset: 1

Author

Robert Bilinski, Sep 21 2020

Keywords

Examples

			5 is a term in the sequence because the fecundity of 5 is 1, the fecundity of 1 is 10 and the fecundity of 10 is 0.
7 is not a term in the sequence because the fecundity of 7 is 7 and therefore the fecundity will never become 0.
		

Crossrefs

Programs

  • Maple
    fec:= proc(n) local k, x,t;
      x:= n;
      for k from 0 do
        t:= convert(convert(x,base,10),`*`);
        if t = 0 then return k fi;
        x:= x+t
      od
    end proc:
    filter:= proc(n) local v; option remember;
        v:= fec(n);
        if v = 0 then true
        elif v = n then false
        else procname(v)
        fi
    end proc:
    select(filter, [$0..1000]); # Robert Israel, Apr 12 2021
  • Mathematica
    fec[n_] := Length @ FixedPointList[# + Times @@ IntegerDigits[#] &, n] - 2; Select[Range[0, 100], FixedPoint[fec, #] == 0 &] (* Amiram Eldar, Sep 22 2020 *)
  • Python
    from math import prod
    from functools import lru_cache
    def pd(n): return prod(map(int, str(n)))
    def A070562(n):
      s = 0
      while pd(n) != 0: n, s = n + pd(n), s + 1
      return s
    @lru_cache(maxsize=None)
    def ok(n):
      fn = A070562(n)
      if fn == 0: return True
      if fn == n: return False
      return ok(fn)
    print(list(filter(ok, range(128)))) # Michael S. Branicky, Apr 12 2021

Extensions

More terms from Amiram Eldar, Sep 22 2020
Offset changed by Robert Israel, Apr 12 2021

A336605 a(n) is the number of partitions of the n-th tetrahedral number (A000292).

Original entry on oeis.org

1, 1, 5, 42, 627, 14883, 526823, 26543660, 1844349560, 172389800255, 21248279009367, 3397584011986773, 695143713458946040, 179855916453958267598, 58248417552751868050007, 23402165235974892374954302, 11571309261543787320061392679
Offset: 0

Author

Robert Bilinski, Sep 13 2020

Keywords

Crossrefs

Programs

  • PARI
    a(n) = numbpart(n*(n+1)*(n+2)/6); \\ Michel Marcus, Sep 14 2020

Formula

a(n) = p(n*(n+1)*(n+2)/6).
a(n) = A000041(A000292(n)).

A334631 a(n) = number of letters in the sum of all previous terms, with a(1) = 1 (in US English, excluding spaces and hyphens).

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 6, 9, 9, 9, 10, 12, 10, 10, 14, 18, 21, 20, 22, 10, 13, 21, 19, 20, 21, 16, 18, 23, 20, 21, 14, 18, 21, 20, 22, 22, 19, 22, 16, 21, 22, 18, 21, 20, 22, 12, 18, 18, 22, 19, 22, 18, 22, 20, 22, 23, 18, 21, 20, 22, 22
Offset: 1

Author

Robert Bilinski, Sep 14 2020

Keywords

Examples

			a(4) = 5, as a(1) + a(2) + a(3) = 8 and 8 has 5 letters in English.
		

Crossrefs

A328738 Numbers k such that at least one of sopfr(k-1) and sopfr(k+1) is greater than or equal to 4*sopfr(k).

Original entry on oeis.org

48, 54, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 126, 128, 130, 132, 135, 136, 138, 140, 147, 150, 152, 156, 162, 165, 168, 174, 180, 182, 190, 192, 195, 196, 198, 200, 210, 222, 224, 225, 228, 230, 232, 234
Offset: 1

Author

Robert Bilinski, Oct 26 2019

Keywords

Comments

k-1 or k+1 or both have sums of prime factors at least 4 times the sum of prime factors of k.

Crossrefs

A328737 Numbers k such that at least one of sopfr(k-1) and sopfr(k+1) is greater than or equal to 3*sopfr(k).

Original entry on oeis.org

30, 32, 36, 40, 42, 48, 52, 54, 60, 66, 68, 70, 72, 75, 78, 80, 81, 84, 88, 90, 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 117, 126, 128, 130, 132, 135, 136, 138, 140, 143, 147, 148, 150, 152, 156, 160, 162, 164, 165, 168, 172, 174, 176, 180
Offset: 1

Author

Robert Bilinski, Oct 26 2019

Keywords

Comments

k-1 or k+1 or both have sums of prime factors at least 3 times the sum of prime factors of k.

Crossrefs

A328736 Numbers k such that at least one of sopfr(k-1) and sopfr(k+1) is greater than or equal to 2*sopfr(k).

Original entry on oeis.org

16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 52, 54, 60, 63, 66, 68, 70, 72, 75, 78, 80, 81, 84, 85, 88, 90, 95, 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 117, 119, 121, 125, 126, 128, 130, 132, 133, 135, 136, 138, 140, 143, 144, 145
Offset: 1

Author

Robert Bilinski, Oct 26 2019

Keywords

Comments

k-1 or k+1 or both have sums of prime factors at least twice the sum of prime factors of k.

Crossrefs

Programs

  • Mathematica
    sop[n_] := If[n<2, 0, Total[Times @@@ FactorInteger@ n]]; Select[ Range[2, 150], (s = 2 sop[#]; sop[#+1] >= s || sop[#-1] >= s) &] (* Giovanni Resta, Oct 27 2019 *)

A328263 a(n) = number of letters in a(n-1) (in Polish), with a(1) = 1.

Original entry on oeis.org

1, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6, 5, 4, 6
Offset: 1

Author

Robert Bilinski, Oct 09 2019

Keywords

Comments

a(1) = 1; for n>1, a(n) = numbers of letters in Polish name for a(n-1).
Decimal expansion of 515/333. - Elmo R. Oliveira, May 05 2024

Examples

			Jeden, pięć, cztery, sześć, pięć, ...
		

Crossrefs

Cf. A008962 (number of letters).
Cf. A000655 (English), A061504 (French), A101432 (Spanish).

Formula

a(n) = a(n-3) for n > 4. - Elmo R. Oliveira, May 05 2024

A327749 Natural numbers whose sum of prime factors (with repetition) is palindromic in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 24, 27, 28, 40, 45, 48, 54, 57, 62, 85, 101, 102, 106, 116, 121, 123, 131, 151, 181, 182, 191, 194, 218, 259, 260, 278, 292, 298, 305, 308, 312, 313, 351, 353, 358, 366, 370, 373, 383, 388, 403, 413, 415, 428, 440, 444, 483, 495, 498
Offset: 1

Author

Robert Bilinski, Sep 23 2019

Keywords

Comments

Union of 1, A046352 and the palindromic primes (A002385). - Corrected by Robert Israel, Nov 20 2020

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.

Crossrefs

Programs

  • Magma
    [1] cat [k: k in [2..500]| Intseq(a) eq Reverse(Intseq(a)) where a is &+[m[1]*m[2]: m in Factorization(k)]]; // Marius A. Burtea, Sep 27 2019
  • Maple
    ispali:= proc(n) option remember; local L; L:= convert(n,base,10); evalb(L = ListTools:-Reverse(L)) end proc:
    spf:= proc(n) add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    select(t -> ispali(spf(t)), [$0..1000]); # Robert Israel, Nov 20 2020
  • Mathematica
    sopfr[1] = 0; sopfr[n_] := Plus @@ (Times @@@ FactorInteger[n]); aQ[n_] := PalindromeQ[sopfr[n]]; Select[Range[500], aQ] (* Amiram Eldar, Sep 23 2019 *)
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    isok(n) = my(d=digits(sopfr(n))); d == Vecrev(d); \\ Michel Marcus, Sep 27 2019
    

A327687 Partial sums of Pisano periods (A001175).

Original entry on oeis.org

1, 4, 12, 18, 38, 62, 78, 90, 114, 174, 184, 208, 236, 284, 324, 348, 384, 408, 426, 486, 502, 532, 580, 604, 704, 788, 860, 908, 922, 1042, 1072, 1120, 1160, 1196, 1276, 1300, 1376, 1394, 1450, 1510, 1550, 1598, 1686, 1716, 1836, 1884, 1916, 1940, 2052, 2352, 2424, 2508, 2616, 2688, 2708
Offset: 1

Author

Robert Bilinski, Sep 22 2019

Keywords

Crossrefs

Cf. A001175.

Programs

  • Mathematica
    Module[{nn=1000,fibs},fibs=Fibonacci[Range[nn]];Accumulate[Table[Length[ FindTransientRepeat[ Mod[fibs,n],2][[2]]],{n,70}]]] (* Harvey P. Dale, Jul 08 2023 *)