cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A026820 Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 11, 13, 14, 15, 1, 5, 10, 15, 18, 20, 21, 22, 1, 5, 12, 18, 23, 26, 28, 29, 30, 1, 6, 14, 23, 30, 35, 38, 40, 41, 42, 1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56, 1, 7, 19, 34, 47, 58, 65, 70, 73, 75, 76, 77
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, 2;
  1, 2,  3;
  1, 3,  4,  5;
  1, 3,  5,  6,  7;
  1, 4,  7,  9, 10, 11;
  1, 4,  8, 11, 13, 14, 15;
  1, 5, 10, 15, 18, 20, 21, 22;
  1, 5, 12, 18, 23, 26, 28, 29, 30;
  1, 6, 14, 23, 30, 35, 38, 40, 41, 42;
  1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56;
  ...
		

References

  • G. Chrystal, Algebra, Vol. II, p. 558.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

Crossrefs

Partial sums of rows of A008284, row sums give A058397, central terms give A171985, mirror is A058400.
T(n,n) = A000041(n), T(n,1) = A000012(n), T(n,2) = A008619(n) for n>1, T(n,3) = A001399(n) for n>2, T(n,4) = A001400(n) for n>3, T(n,5) = A001401(n) for n>4, T(n,6) = A001402(n) for n>5, T(n,7) = A008636(n) for n>6, T(n,8) = A008637(n) for n>7, T(n,9) = A008638(n) for n>8, T(n,10) = A008639(n) for n>9, T(n,11) = A008640(n) for n>10, T(n,12) = A008641(n) for n>11, T(n,n-2) = A007042(n-1) for n>2, T(n,n-1) = A000065(n) for n>1.

Programs

  • Haskell
    import Data.List (inits)
    a026820 n k = a026820_tabl !! (n-1) !! (k-1)
    a026820_row n = a026820_tabl !! (n-1)
    a026820_tabl = zipWith
       (\x -> map (p x) . tail . inits) [1..] $ tail $ inits [1..] where
       p 0 _ = 1
       p _ [] = 0
       p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 21 2012
  • Mathematica
    t[n_, k_] := Length@ IntegerPartitions[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    T(n,k)=my(s); forpart(v=n,s++,,k); s \\ Charles R Greathouse IV, Feb 27 2018
    
  • SageMath
    from sage.combinat.partition import number_of_partitions_length
    from itertools import accumulate
    for n in (1..11):
        print(list(accumulate([number_of_partitions_length(n, k) for k in (1..n)])))
    # Peter Luschny, Jul 28 2022

Formula

T(T(n,n),n) = A134737(n). - Reinhard Zumkeller, Nov 07 2007
T(A000217(n),n) = A173519(n). - Reinhard Zumkeller, Feb 20 2010
T(n,k) = T(n,k-1) + T(n-k,k). - Thomas Dybdahl Ahle, Jun 13 2011
T(n,k) = Sum_{i=1..min(k,floor(n/2))} T(n-i,i) + Sum_{j=1+floor(n/2)..k} A000041(n-j). - Bob Selcoe, Aug 22 2014 [corrected by Álvar Ibeas, Mar 15 2018]
O.g.f.: Product_{i>=0} 1/(1-y*x^i). - Geoffrey Critzer, Mar 11 2012
T(n,k) = A008284(n+k,k). - Álvar Ibeas, Jan 06 2015

A206226 Number of partitions of n^2 into parts not greater than n.

Original entry on oeis.org

1, 1, 3, 12, 64, 377, 2432, 16475, 116263, 845105, 6292069, 47759392, 368379006, 2879998966, 22777018771, 181938716422, 1465972415692, 11902724768574, 97299665768397, 800212617435074, 6617003142869419, 54985826573015541, 458962108485797208, 3846526994743330075
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Also the number of partitions of n^2 using n or fewer numbers. Thus for n=3 one has: 9; 1,8; 2,7; 3,6; 4,5; 1,1,7; 1,2,6; 1,3,5; 1,4,4; 2,2,5; 2,3,4; 3,3,3. - J. M. Bergot, Mar 26 2014 [computations done by Charles R Greathouse IV]
The partitions in the comments above are the conjugates of the partitions in the definition. By conjugation we have: "partitions into parts <= m" are equinumerous with "partitions into at most m parts". - Joerg Arndt, Mar 31 2014
From Vaclav Kotesovec, May 25 2015: (Start)
In general, "number of partitions of j*n^2 into parts that are at most n" is (for j>0) asymptotic to c(j) * d(j)^n / n^2, where c(j) and d(j) are a constants.
-------
j c(j)
1 0.1582087202672504149766310999238...
2 0.0794245035465730707705885572860...
3 0.0530017980244665552354063060738...
4 0.0397666338404544208556554596295...
5 0.0318193213988281353709268311928...
...
17 0.0093617308583114626385718275875...
c(j) for big j asymptotically approaches 1 / (2*Pi*j).
---------
j d(j)
1 9.15337019245412246194853029240... = A258268
2 16.57962120993269533568313969522...
3 23.98280768122086592445663786762...
4 31.37931997386325137074644287711...
5 38.77298550971449870728474612568...
...
17 127.45526806942537991146993713837...
d(j) for big j asymptotically approaches j * exp(2).
(End)
d(j) = r^(2*j+1)/(r-1), where r is the root of the equation polylog(2, 1-r) + (j+1/2)*log(r)^2 = 0. - Vaclav Kotesovec, Jun 11 2015

Crossrefs

Column k=2 of A238016.
Cf. A258296 (j=2), A258293 (j=3), A258294 (j=4), A258295 (j=5).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n^2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
    (* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* Vaclav Kotesovec, Jun 11 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2)))),n^2)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) = [x^(n^2)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.1582087202672504149766310999238742... . - Vaclav Kotesovec, Sep 07 2014

A206240 Number of partitions of n^2-n into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 34, 192, 1206, 8033, 55974, 403016, 2977866, 22464381, 172388026, 1341929845, 10573800028, 84192383755, 676491536028, 5479185281572, 44692412971566, 366844007355202, 3028143252035976, 25123376972033392, 209401287806758273, 1752674793617241002
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Also the number of partitions of n^2 into exactly n parts. - Seiichi Manyama, May 07 2018

Examples

			From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of n^2 into exactly n parts
--+-------------------------------------------------------
1 | 1.
2 | 3+1 = 2+2.
3 | 7+1+1 = 6+2+1 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 3+3+3. (End)
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2-n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2-n)))),n^2-n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2-n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.153370192454122461948530292401354540073... = A258268, c = 0.07005383646855329845970382163053268... . - Vaclav Kotesovec, Sep 07 2014

A258268 Decimal expansion of a constant related to A206226.

Original entry on oeis.org

9, 1, 5, 3, 3, 7, 0, 1, 9, 2, 4, 5, 4, 1, 2, 2, 4, 6, 1, 9, 4, 8, 5, 3, 0, 2, 9, 2, 4, 0, 1, 3, 5, 4, 5, 4, 0, 0, 7, 3, 3, 2, 7, 2, 0, 4, 1, 2, 1, 8, 4, 8, 8, 4, 9, 6, 8, 9, 2, 6, 3, 2, 0, 1, 4, 7, 6, 1, 3, 8, 3, 7, 6, 6, 8, 9, 5, 7, 3, 1, 6, 2, 3, 9, 1, 5, 1, 9, 0, 2, 5, 5, 8, 7, 9, 5, 1, 9, 2, 8, 4, 5, 3, 8, 9
Offset: 1

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Examples

			9.153370192454122461948530292401354540073...
		

Crossrefs

Programs

  • Mathematica
    r^3/(r-1) /.FindRoot[-PolyLog[2, 1-r] == 3*Log[r]^2/2, {r, E}, WorkingPrecision->120] (* Vaclav Kotesovec, Jun 11 2015 *)

Formula

Equals limit n->infinity A206226(n)^(1/n).
Equals limit n->infinity A206227(n)^(1/n).
Equals limit n->infinity A206240(n)^(1/n).

Extensions

More digits from Vaclav Kotesovec, Jun 10 2015

A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.

Original entry on oeis.org

1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of integer partitions finer than (n, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + n ordered by refinement.
a(n+1)/a(n) appears to converge as n -> oo. - Chai Wah Wu, Nov 14 2018

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (1)  (21)   (321)     (4321)
       (111)  (2211)    (32221)
              (3111)    (33211)
              (21111)   (42211)
              (111111)  (43111)
                        (222211)
                        (322111)
                        (331111)
                        (421111)
                        (2221111)
                        (3211111)
                        (4111111)
                        (22111111)
                        (31111111)
                        (211111111)
                        (1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A321470_gen(): # generator of terms
        aset = {(1,)}
        yield 1
        for n in count(2):
            yield len(aset)
            aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
    A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023

Formula

a(n) <= A173519(n). - David A. Corneth, Sep 20 2023

Extensions

a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023

A066655 Number of partitions of n*(n-1)/2.

Original entry on oeis.org

1, 1, 3, 11, 42, 176, 792, 3718, 17977, 89134, 451276, 2323520, 12132164, 64112359, 342325709, 1844349560, 10015581680, 54770336324, 301384802048, 1667727404093, 9275102575355, 51820051838712, 290726957916112, 1637293969337171, 9253082936723602
Offset: 1

Views

Author

Roberto E. Martinez II, Jan 10 2002

Keywords

Comments

Number of partitions of the number of edges of the complete graph of order n, K_n.

Examples

			a(4) = p(6) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n(n-1)/2], {n, 1, 30}]
  • MuPAD
    combinat::partitions::count(binomial(n+2,n)) $n=-1..40 // Zerinvary Lajos, Apr 16 2007
    
  • PARI
    a(n) = numbpart(n*(n-1)/2); \\ Michel Marcus, Dec 18 2017

Formula

a(n) = p(n*(n-1)/2) = A000041(n*(n-1)/2).
a(n) ~ exp(Pi*sqrt(n*(n-1)/3))/(2*sqrt(3)*n*(n - 1)). - Ilya Gutkovskiy, Jan 13 2017
a(n) ~ exp(Pi*(n - 1/2) / sqrt(3)) / (2*sqrt(3)*n^2). - Vaclav Kotesovec, May 17 2018

Extensions

More terms from Vladeta Jovovic, Jan 12 2002
Edited by Dean Hickerson, Jan 14 2002

A258234 Decimal expansion of a constant related to A107379.

Original entry on oeis.org

5, 4, 0, 0, 8, 7, 1, 9, 0, 4, 1, 1, 8, 1, 5, 4, 1, 5, 2, 4, 6, 6, 0, 9, 1, 1, 1, 9, 1, 0, 4, 2, 7, 0, 0, 5, 2, 0, 2, 9, 4, 3, 7, 7, 1, 0, 1, 9, 1, 6, 7, 0, 5, 7, 0, 9, 3, 1, 7, 0, 6, 0, 1, 4, 4, 8, 4, 4, 8, 5, 1, 5, 9, 5, 0, 7, 5, 8, 1, 7, 7, 8, 9, 8, 8, 7, 4, 7, 9, 2, 0, 0, 0, 0, 6, 2, 0, 6, 2, 7, 7, 6, 7, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Comments

Limit n->infinity (Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx)^(1/n) = Limit n->infinity (A258191(n)/A258192(n))^(1/n) = 1/A258234 = 0.18515528932235959464731321119795428527382236445907508398560553036... .

Examples

			5.4008719041181541524660911191042700520294...
		

Crossrefs

Programs

  • Mathematica
    r^2/(r-1) /.FindRoot[-PolyLog[2, 1-r] == Log[r]^2, {r, E}, WorkingPrecision->117] (* Vaclav Kotesovec, Jun 11 2015 *)

Formula

Equals limit n->infinity A107379(n)^(1/n).
Equals limit n->infinity A173519(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Jun 09 2015

A320932 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} Sum_{m>=0} x^(k*m^2).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 20, 51, 141, 381, 1001, 2796, 7861, 22306, 64129, 185692, 540468, 1585246, 4674464, 13846636, 41216933, 123176849, 369410571, 1111661833, 3355466306, 10156304314, 30821794651, 93761053797, 285859742756, 873355481467, 2673455511946, 8198687383812
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2018

Keywords

Comments

Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.

Examples

			1*1^2 + 2*1^2 + 3*1^2 + 4*1^2 + 5*1^2 = 15.
1*2^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*1^2 = 15.
1*0^2 + 2*2^2 + 3*1^2 + 4*1^2 + 5*0^2 = 15.
1*3^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*0^2 = 15.
1*1^2 + 2*1^2 + 3*2^2 + 4*0^2 + 5*0^2 = 15.
1*2^2 + 2*2^2 + 3*1^2 + 4*0^2 + 5*0^2 = 15.
So a(5) = 6.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else b(n, i-1); for j while
            i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 28 2018
  • Mathematica
    nmax = 30; Table[SeriesCoefficient[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
  • PARI
    {a(n) = polcoeff(prod(i=1, n, sum(j=0, sqrtint(n*(n+1)\(2*i)), x^(i*j^2)+x*O(x^(n*(n+1)/2)))), n*(n+1)/2)}

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function.

A206227 Number of partitions of n^2+n into parts not greater than n.

Original entry on oeis.org

1, 1, 4, 19, 108, 674, 4494, 31275, 225132, 1662894, 12541802, 96225037, 748935563, 5900502806, 46976736513, 377425326138, 3056671009814, 24930725879856, 204623068332997, 1688980598900228, 14012122025369431, 116784468316023069, 977437078888272796, 8212186058546599006
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2+n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - Vaclav Kotesovec, Sep 07 2014

A320931 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 4, 12, 24, 80, 292, 966, 3876, 15554, 61608, 254612, 1065676, 4471672, 19074968, 82043172, 354365492, 1543432514, 6760146292, 29732837780, 131440491584, 583419967664, 2598585783488, 11615321544700, 52079369904384, 234157152231726, 1055628140278948, 4770576024205060
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.

Examples

			Solutions (a_1, a_2, ... , a_4) to the equation a_1^2 + 2*a_2^2 + ... + 4*a_4^2 = 10.
-------------------------------------------------------------------------------------
( 1,  1,  1,  1), ( 1,  1,  1, -1),
( 1,  1, -1,  1), ( 1,  1, -1, -1),
( 1, -1,  1,  1), ( 1, -1,  1, -1),
( 1, -1, -1,  1), ( 1, -1, -1, -1),
(-1,  1,  1,  1), (-1,  1,  1, -1),
(-1,  1, -1,  1), (-1,  1, -1, -1),
(-1, -1,  1,  1), (-1, -1,  1, -1),
(-1, -1, -1,  1), (-1, -1, -1, -1),
( 2,  1,  0,  1), ( 2,  1,  0, -1),
( 2, -1,  0,  1), ( 2, -1,  0, -1),
(-2,  1,  0,  1), (-2,  1,  0, -1),
(-2, -1,  0,  1), (-2, -1,  0, -1).
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)

Formula

a(n) ~ c * d^n / n^(7/4), where d = 4.818071572655... and c = 0.5869031198... - Vaclav Kotesovec, Oct 29 2018
Showing 1-10 of 10 results.