cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A097356 Number of partitions of n into parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 16475, 18138, 19928, 21873, 23961
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 08 2004

Keywords

Crossrefs

Programs

  • Haskell
    a097356 n = p [1..a000196 n] n where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n, (r-> `if`(r*r>n, r-1, r))(isqrt(n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 02 2018
  • Mathematica
    Table[Length[IntegerPartitions[n,Floor[Sqrt[n]]]],{n,70}] (* Harvey P. Dale, May 11 2011 *)
    f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; Table[ f[n, Floor[Sqrt[n]]], {n, 53}] (* Robert G. Wilson v, Aug 13 2011 *)
  • PARI
    a(n,k=sqrtint(n))=if(min(n,k)<2,1,sum(i=1,min(k,n),a(n-i,i))) \\ Charles R Greathouse IV, Aug 12 2011

Formula

a(n^2) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.1582087202672504149766310999238... [see A206226, constant c(1)]. The upper bound of a(n) is c * d^sqrt(n) / n, see graph. For the lower bound, the constant c = 0.088154883798697116... (conjectured). - Vaclav Kotesovec, Jan 08 2024

A206226 Number of partitions of n^2 into parts not greater than n.

Original entry on oeis.org

1, 1, 3, 12, 64, 377, 2432, 16475, 116263, 845105, 6292069, 47759392, 368379006, 2879998966, 22777018771, 181938716422, 1465972415692, 11902724768574, 97299665768397, 800212617435074, 6617003142869419, 54985826573015541, 458962108485797208, 3846526994743330075
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Also the number of partitions of n^2 using n or fewer numbers. Thus for n=3 one has: 9; 1,8; 2,7; 3,6; 4,5; 1,1,7; 1,2,6; 1,3,5; 1,4,4; 2,2,5; 2,3,4; 3,3,3. - J. M. Bergot, Mar 26 2014 [computations done by Charles R Greathouse IV]
The partitions in the comments above are the conjugates of the partitions in the definition. By conjugation we have: "partitions into parts <= m" are equinumerous with "partitions into at most m parts". - Joerg Arndt, Mar 31 2014
From Vaclav Kotesovec, May 25 2015: (Start)
In general, "number of partitions of j*n^2 into parts that are at most n" is (for j>0) asymptotic to c(j) * d(j)^n / n^2, where c(j) and d(j) are a constants.
-------
j c(j)
1 0.1582087202672504149766310999238...
2 0.0794245035465730707705885572860...
3 0.0530017980244665552354063060738...
4 0.0397666338404544208556554596295...
5 0.0318193213988281353709268311928...
...
17 0.0093617308583114626385718275875...
c(j) for big j asymptotically approaches 1 / (2*Pi*j).
---------
j d(j)
1 9.15337019245412246194853029240... = A258268
2 16.57962120993269533568313969522...
3 23.98280768122086592445663786762...
4 31.37931997386325137074644287711...
5 38.77298550971449870728474612568...
...
17 127.45526806942537991146993713837...
d(j) for big j asymptotically approaches j * exp(2).
(End)
d(j) = r^(2*j+1)/(r-1), where r is the root of the equation polylog(2, 1-r) + (j+1/2)*log(r)^2 = 0. - Vaclav Kotesovec, Jun 11 2015

Crossrefs

Column k=2 of A238016.
Cf. A258296 (j=2), A258293 (j=3), A258294 (j=4), A258295 (j=5).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n^2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
    (* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* Vaclav Kotesovec, Jun 11 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2)))),n^2)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) = [x^(n^2)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.1582087202672504149766310999238742... . - Vaclav Kotesovec, Sep 07 2014

A206240 Number of partitions of n^2-n into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 34, 192, 1206, 8033, 55974, 403016, 2977866, 22464381, 172388026, 1341929845, 10573800028, 84192383755, 676491536028, 5479185281572, 44692412971566, 366844007355202, 3028143252035976, 25123376972033392, 209401287806758273, 1752674793617241002
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Also the number of partitions of n^2 into exactly n parts. - Seiichi Manyama, May 07 2018

Examples

			From _Seiichi Manyama_, May 07 2018: (Start)
n | Partitions of n^2 into exactly n parts
--+-------------------------------------------------------
1 | 1.
2 | 3+1 = 2+2.
3 | 7+1+1 = 6+2+1 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 3+3+3. (End)
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2-n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2-n)))),n^2-n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2-n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.153370192454122461948530292401354540073... = A258268, c = 0.07005383646855329845970382163053268... . - Vaclav Kotesovec, Sep 07 2014

A258234 Decimal expansion of a constant related to A107379.

Original entry on oeis.org

5, 4, 0, 0, 8, 7, 1, 9, 0, 4, 1, 1, 8, 1, 5, 4, 1, 5, 2, 4, 6, 6, 0, 9, 1, 1, 1, 9, 1, 0, 4, 2, 7, 0, 0, 5, 2, 0, 2, 9, 4, 3, 7, 7, 1, 0, 1, 9, 1, 6, 7, 0, 5, 7, 0, 9, 3, 1, 7, 0, 6, 0, 1, 4, 4, 8, 4, 4, 8, 5, 1, 5, 9, 5, 0, 7, 5, 8, 1, 7, 7, 8, 9, 8, 8, 7, 4, 7, 9, 2, 0, 0, 0, 0, 6, 2, 0, 6, 2, 7, 7, 6, 7, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Comments

Limit n->infinity (Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx)^(1/n) = Limit n->infinity (A258191(n)/A258192(n))^(1/n) = 1/A258234 = 0.18515528932235959464731321119795428527382236445907508398560553036... .

Examples

			5.4008719041181541524660911191042700520294...
		

Crossrefs

Programs

  • Mathematica
    r^2/(r-1) /.FindRoot[-PolyLog[2, 1-r] == Log[r]^2, {r, E}, WorkingPrecision->117] (* Vaclav Kotesovec, Jun 11 2015 *)

Formula

Equals limit n->infinity A107379(n)^(1/n).
Equals limit n->infinity A173519(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Jun 09 2015

A258789 a(n) = [x^n] Product_{k=1..n} 1/(x^(2*k)*(1-x^k)).

Original entry on oeis.org

1, 1, 5, 27, 169, 1115, 7760, 55748, 411498, 3101490, 23785645, 185064559, 1457664666, 11602828475, 93205739436, 754751603157, 6155229065861, 50515624923790, 416930705579538, 3458726257239312, 28825340825747729, 241245120218823892, 2026803168946440648
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
    				
  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(2*k)*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(n+2)}], {n, 0, 30}]

Formula

a(n) ~ c * d^n / n^2, where d = A258268 = 9.15337019245412246194853029240135454007332720412184884968926320147613... = r^3/(r-1), where r is the root of the equation polylog(2, 1-r) + 3*log(r)^2/2 = 0, c = 0.8069142856822510276258439534144172057548... .

A161407 Number of partitions of n^2 into parts smaller than n.

Original entry on oeis.org

1, 0, 1, 5, 30, 185, 1226, 8442, 60289, 442089, 3314203, 25295011, 195990980, 1538069121, 12203218743, 97746332667, 789480879664, 6423539487002, 52607252796831, 433368610079872, 3588859890833443, 29862449600982149, 249560820679038935, 2093852201126089073
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 10 2009

Keywords

Examples

			a(3) = #{2+2+2+2+1, 2+2+2+1+1+1, 2+2+5x1, 2+7x1, 9x1} = 5.
		

Crossrefs

Programs

  • Maple
    a := proc (n) local G, Gser: G := 1/(product(1-x^j, j = 1 .. n-1)): Gser := series(G, x = 0, n^2+5): coeff(Gser, x, n^2) end proc: 1, seq(a(n), n = 1 .. 23); # Emeric Deutsch, Jun 20 2009
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n^2, n-1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 21 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n^2, n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.0881548837986971165169272782933415... - Vaclav Kotesovec, Sep 08 2021

Extensions

More terms from Emeric Deutsch, Jun 20 2009
a(0)=1 from Alois P. Heinz, Dec 21 2014

A206227 Number of partitions of n^2+n into parts not greater than n.

Original entry on oeis.org

1, 1, 4, 19, 108, 674, 4494, 31275, 225132, 1662894, 12541802, 96225037, 748935563, 5900502806, 46976736513, 377425326138, 3056671009814, 24930725879856, 204623068332997, 1688980598900228, 14012122025369431, 116784468316023069, 977437078888272796, 8212186058546599006
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(T(n^2+n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - Vaclav Kotesovec, Sep 07 2014

A316353 Number of partitions of positive integer n such that all parts are less than the square root of n.

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 4, 5, 5, 14, 16, 19, 21, 24, 27, 30, 72, 84, 94, 108, 120, 136, 150, 169, 185, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 8442, 18138, 19928, 21873, 23961, 26226, 28652
Offset: 1

Views

Author

Richard Locke Peterson, Jun 29 2018

Keywords

Comments

This sequence itself is not a semigroup, but the set of all the partitions enumerated by this sequence does form a semigroup (actually a subsemigroup of the set of all partitions) with the following binary operation: let alpha = the partition (a,b,c,... [this is of course a finite list]) be the partition of the number N1 [that is, a + b + c + ... = N1] and let ALPHA = (A,B,C,...) be the partition of N2. Then the binary operation given by alpha*ALPHA = (a,b,c,...)*(A,B,C,...) = (aA,aB,aC,...,bA,bB,bC,...,cA,cB,cC,...) is a partition of the integer N1*N2. Furthermore, since any part x of alpha is less than the square root of N1, and likewise for any part Y of ALPHA, then the part xY is less than the square root of N1*N2, so the set is a subsemigroup of the semigroup of all partitions under the given operation. If the sole partition (1) of 1 is adjoined, the semigroup becomes a monoid.

Examples

			a(3)=1, since the partition (1,1,1) is the only partition of 3 with all parts less than the square root of 3 ~ 1.73.
a(6)=4, since there are only 4 allowable partitions: (1,1,1,1,1,1,1), (1,1,1,1,2), (1,1,2,2), and (2,2,2).
		

Crossrefs

Cf. A000041 (the partition numbers), A097356 (with 'no greater' rather than less).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n, (r-> `if`(r*r>=n, r-1, r))(isqrt(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 02 2018
  • Mathematica
    Table[With[{s = Sqrt@ n}, Count[IntegerPartitions[n], ?(AllTrue[#, # < s &] &)]], {n, 53}] (* _Michael De Vlieger, Jul 22 2018 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt[n - 1]]; Array[f, 50] (* Robert G. Wilson v, Jul 24 2018 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    a[n_] := b[n, Function[r, If[r*r >= n, r - 1, r]][Floor[Sqrt[n]]]];
    Array[a, 100] (* Jean-François Alcover, May 30 2021, after Alois P. Heinz *)
  • PARI
    a(n) = my(nb = 0); forpart(p=n, nb++, sqrtint(n)-issquare(n)); nb; \\ Michel Marcus, Jul 15 2018

Formula

log(a(n)) ~ log(A258268) * sqrt(n) - log(n). - Vaclav Kotesovec, May 30 2021

Extensions

More terms from Michel Marcus, Jul 15 2018
Showing 1-8 of 8 results.