1, 2, 2, 3, 5, 6, 3, 4, 9, 4, 7, 10, 9, 14, 4, 5, 7, 18, 8, 10, 7, 7, 14, 11, 6, 26, 12, 9, 29, 30, 5, 6, 33, 11, 21, 6, 11, 15, 22, 27, 41, 6, 17, 8, 8, 7, 22, 24, 15, 50, 28, 8, 53, 18, 22, 14, 25, 9, 15, 55, 14, 50, 6, 7, 65, 11, 19, 34, 69, 23, 35, 14, 22, 74, 10
Offset: 1
For n=3, the permutation (1)*(1,2)*(1,2,3)=(1)*(2,3), which is associated with the partition <2,1> of 3. The size of the largest part is 2, so a(3)=2.
For n=11, the permutation (1)*(1,2)*..*(1,2,..11)=(1,2,7,5)*(3,4,8,10,11,6,9) when rewritten as the product of disjoint cycles, which is associated with the partition <7,4> of 11. The size of the largest part is 7, so a(11)=7.
Comments