cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A173519 Number of partitions of n*(n+1)/2 into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 23, 84, 331, 1367, 5812, 25331, 112804, 511045, 2348042, 10919414, 51313463, 243332340, 1163105227, 5598774334, 27119990519, 132107355553, 646793104859, 3181256110699, 15712610146876, 77903855239751, 387609232487489, 1934788962992123
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - Alois P. Heinz, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* Alonso del Arte, Aug 12 2011 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    a(n)=
    {
        local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);
        gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */
        return( polcoeff( truncate(gf), tr ) );
    } /* Joerg Arndt, Aug 14 2011 */

Formula

a(n) = A026820(A000217(n),n).
a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - Vaclav Kotesovec, Sep 07 2014

Extensions

More terms from D. S. McNeil, Aug 12 2011

A364526 Number of compositions (ordered partitions) of n into parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 8, 13, 21, 34, 149, 274, 504, 927, 1705, 3136, 5768, 20569, 39648, 76424, 147312, 283953, 547337, 1055026, 2033628, 3919944, 11749641, 23099186, 45411804, 89277256, 175514464, 345052351, 678355061, 1333610936, 2621810068, 5154342880, 10133171296
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n)=my(s=sqrtint(n), x='x+O('x^(n+1))); polcoef(Pol(Ser(1/(1-sum(j=1,s,x^j)))),n);
    vector(33,n,a(n-1)) \\ Joerg Arndt, Dec 22 2023

Formula

a(n) = [x^n] 1 / (1 - Sum_{1 <= j <= sqrt(n)} x^j).

A097355 Number of partitions of n into parts not greater than floor(log_2(n)).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 4, 4, 10, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765, 4033, 4319, 4616, 4932
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 08 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[ IntegerPartitions[n, Floor[Log[2, n]]]]; Table[a[n], {n, 1, 54}] (* Jean-François Alcover, May 24 2012 *)

A194020 Number of partitions of n into parts not less than the integer part of the square root of n.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 4, 4, 7, 4, 5, 6, 9, 10, 13, 17, 11, 12, 16, 18, 24, 27, 34, 39, 50, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 304, 346, 390, 443, 498, 565, 635, 719, 807, 911, 1022, 1153
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 12 2011

Keywords

Examples

			a(7) = #{7, 5+2, 4+3, 3+2+2} = 4;
a(8) = #{8, 6+2, 5+3, 4+4, 4+2+2, 3+3+2, 2+2+2+2} = 7;
a(9) = #{9, 6+3, 5+4, 3+3+3} = 4;
a(10) = #{10, 7+3, 6+4, 5+5, 4+3+3} = 5;
a(11) = #{11, 8+3, 7+4, 6+5, 5+3+3, 4+4+3} = 6.
		

Crossrefs

Programs

  • Haskell
    a194020 n = p (a000196 n) n where
       p _  0 = 1
       p k m | m < k     = 0
             | otherwise = p k (m - k) + p (k+1) m
  • Mathematica
    Table[Length[Select[IntegerPartitions[n], #[[-1]] >= Floor[Sqrt[n]] &]], {n, 60}] (* Alonso del Arte, Aug 12 2011 *)

A368502 Number of partitions of an n-set into blocks of size <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 10, 26, 76, 232, 764, 12644, 61136, 312676, 1680592, 9467680, 55704104, 341185496, 6631556521, 49294051497, 380306658250, 3039453750685, 25120541332271, 214363100120051, 1885987611214092, 17085579637664715, 159185637725413675, 3282701194678476257
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Sum[x^j/j!, {j, 1, Floor[Sqrt[n]]}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = n! * [x^n] exp( Sum_{1 <= j <= sqrt(n)} x^j / j! ).

A316353 Number of partitions of positive integer n such that all parts are less than the square root of n.

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 4, 5, 5, 14, 16, 19, 21, 24, 27, 30, 72, 84, 94, 108, 120, 136, 150, 169, 185, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 8442, 18138, 19928, 21873, 23961, 26226, 28652
Offset: 1

Views

Author

Richard Locke Peterson, Jun 29 2018

Keywords

Comments

This sequence itself is not a semigroup, but the set of all the partitions enumerated by this sequence does form a semigroup (actually a subsemigroup of the set of all partitions) with the following binary operation: let alpha = the partition (a,b,c,... [this is of course a finite list]) be the partition of the number N1 [that is, a + b + c + ... = N1] and let ALPHA = (A,B,C,...) be the partition of N2. Then the binary operation given by alpha*ALPHA = (a,b,c,...)*(A,B,C,...) = (aA,aB,aC,...,bA,bB,bC,...,cA,cB,cC,...) is a partition of the integer N1*N2. Furthermore, since any part x of alpha is less than the square root of N1, and likewise for any part Y of ALPHA, then the part xY is less than the square root of N1*N2, so the set is a subsemigroup of the semigroup of all partitions under the given operation. If the sole partition (1) of 1 is adjoined, the semigroup becomes a monoid.

Examples

			a(3)=1, since the partition (1,1,1) is the only partition of 3 with all parts less than the square root of 3 ~ 1.73.
a(6)=4, since there are only 4 allowable partitions: (1,1,1,1,1,1,1), (1,1,1,1,2), (1,1,2,2), and (2,2,2).
		

Crossrefs

Cf. A000041 (the partition numbers), A097356 (with 'no greater' rather than less).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n, (r-> `if`(r*r>=n, r-1, r))(isqrt(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 02 2018
  • Mathematica
    Table[With[{s = Sqrt@ n}, Count[IntegerPartitions[n], ?(AllTrue[#, # < s &] &)]], {n, 53}] (* _Michael De Vlieger, Jul 22 2018 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt[n - 1]]; Array[f, 50] (* Robert G. Wilson v, Jul 24 2018 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    a[n_] := b[n, Function[r, If[r*r >= n, r - 1, r]][Floor[Sqrt[n]]]];
    Array[a, 100] (* Jean-François Alcover, May 30 2021, after Alois P. Heinz *)
  • PARI
    a(n) = my(nb = 0); forpart(p=n, nb++, sqrtint(n)-issquare(n)); nb; \\ Michel Marcus, Jul 15 2018

Formula

log(a(n)) ~ log(A258268) * sqrt(n) - log(n). - Vaclav Kotesovec, May 30 2021

Extensions

More terms from Michel Marcus, Jul 15 2018

A368868 Number of partitions of n into odd parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 29, 31, 33, 35, 37, 40, 42, 44, 47, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 82, 85, 88, 92, 292, 308, 324, 341, 358, 376, 395, 414, 434, 454, 475, 497, 519, 542, 566, 590, 615, 641, 667, 694, 722, 751
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 08 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i::odd, b(n-i, min(n-i, i)), 0)))
        end:
    a:= n-> b(n, floor(sqrt(n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[OddQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 70}]

A369218 Number of partitions of n into prime power parts (including 1) not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 7529, 8185, 8884, 9632, 10427, 11276, 12177
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[k == 1 || PrimePowerQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 55}]

A369219 Number of partitions of n into prime power parts (not including 1) not greater than sqrt(n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 2, 3, 2, 3, 3, 10, 8, 12, 10, 14, 12, 16, 14, 19, 44, 50, 53, 60, 63, 71, 74, 83, 87, 96, 101, 111, 116, 127, 133, 145, 151, 164, 171, 185, 193, 207, 216, 232, 612, 656, 699, 748, 795, 849, 901, 960, 1017, 1081, 1144, 1214, 1282, 1358, 1433, 3620, 3845
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 65}]

A368869 Number of partitions of n into prime parts not greater than sqrt(n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 15, 16, 17, 18, 19, 21, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 42, 43, 45, 47, 150, 158, 166, 175, 183, 193, 202, 212, 222, 232, 243, 254, 265, 277, 289, 301, 314, 327, 340, 354, 368, 383
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 08 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(isprime(i), b(n-i, min(n-i, i)), 0)))
        end:
    a:= n-> b(n, floor(sqrt(n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[PrimeQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 70}]
Showing 1-10 of 14 results. Next