cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368503 Number of partitions of an n-set into blocks of size <= n/2.

Original entry on oeis.org

1, 0, 1, 1, 10, 26, 166, 652, 3795, 18755, 112124, 648649, 4163743, 27216840, 190168577, 1376119903, 10468226150, 82744297014, 681863474058, 5830425411936, 51720008131148, 474821737584174, 4506628734688128, 44150936144057758, 445956917001833090, 4638564968368158592
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Sum[x^j/j!, {j, 1, Floor[n/2]}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = n! * [x^n] exp( Sum_{1 <= j <= n/2} x^j / j! ).

A368511 Number of ordered partitions of an n-set into blocks of size <= sqrt(n).

Original entry on oeis.org

1, 1, 2, 6, 66, 450, 3690, 35280, 385560, 6717480, 96117000, 1512819000, 25975395600, 483169486800, 9678799930800, 207733600074000, 5243385642495000, 128458209887007000, 3332234177825553000, 91241046790816923000, 2629791992312269785000, 79586945507310941700000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - Sum[x^j/j!, {j, 1, Floor[Sqrt[n]]}]), {x, 0, n}], {n, 0, 21}]

Formula

a(n) = n! * [x^n] 1 / (1 - Sum_{1 <= j <= sqrt(n)} x^j / j!).
Showing 1-2 of 2 results.