cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A107379 Number of ways to write n^2 as the sum of n odd numbers, disregarding order.

Original entry on oeis.org

1, 1, 1, 3, 9, 30, 110, 436, 1801, 7657, 33401, 148847, 674585, 3100410, 14422567, 67792847, 321546251, 1537241148, 7400926549, 35854579015, 174677578889, 855312650751, 4207291811538, 20782253017825, 103048079556241, 512753419159803, 2559639388956793
Offset: 0

Views

Author

David Radcliffe, Sep 25 2009

Keywords

Comments

Motivated by the fact that the n-th square is equal to the sum of the first n odd numbers.
Also the number of partitions of n^2 into n distinct parts. a(3) = 3: [1,2,6], [1,3,5], [2,3,4]. - Alois P. Heinz, Jan 20 2011
Also the number of partitions of n*(n-1)/2 into parts not greater than n. - Paul D. Hanna, Feb 05 2012
Also the number of partitions of n*(n+1)/2 into n parts. - J. Stauduhar, Sep 05 2017
Also the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of positive integers. - Felix Huber, Aug 11 2024

Examples

			For example, 9 can be written as a sum of three odd numbers in 3 ways: 1+1+7, 1+3+5 and 3+3+3.
		

Crossrefs

Programs

  • Maple
    f := proc (n, k) option remember;
    if n = 0 and k = 0 then return 1 end if;
    if n <= 0 or n < k then return 0 end if;
    if `mod`(n+k, 2) = 1 then return 0 end if;
    if k = 1 then return 1 end if;
    return procname(n-1, k-1) + procname(n-2*k, k)
    end proc;
    seq(f(k^2,k), k=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n*(n-1)/2)))),n*(n-1)/2)} /* Paul D. Hanna, Feb 05 2012 */

Formula

a(n) = A008284((n^2+n)/2,n) = A008284(A000217(n),n). - Max Alekseyev, Sep 25 2009
a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} 1/(1 - x^k). - Paul D. Hanna, Feb 05 2012
a(n) ~ c * d^n / n^2, where d = 5.400871904118154152466091119104270052029... = A258234, c = 0.155212227152682180502977404265024265... . - Vaclav Kotesovec, Sep 07 2014

Extensions

Arguments in the Maple program swapped and 4 terms added by R. J. Mathar, Oct 02 2009

A173519 Number of partitions of n*(n+1)/2 into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 23, 84, 331, 1367, 5812, 25331, 112804, 511045, 2348042, 10919414, 51313463, 243332340, 1163105227, 5598774334, 27119990519, 132107355553, 646793104859, 3181256110699, 15712610146876, 77903855239751, 387609232487489, 1934788962992123
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - Alois P. Heinz, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* Alonso del Arte, Aug 12 2011 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    a(n)=
    {
        local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);
        gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */
        return( polcoeff( truncate(gf), tr ) );
    } /* Joerg Arndt, Aug 14 2011 */

Formula

a(n) = A026820(A000217(n),n).
a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - Vaclav Kotesovec, Sep 07 2014

Extensions

More terms from D. S. McNeil, Aug 12 2011

A258788 a(n) = [x^n] Product_{k=1..n} 1/(x^k*(1-x^k)).

Original entry on oeis.org

1, 1, 3, 12, 47, 192, 811, 3539, 15765, 71362, 327748, 1524081, 7161629, 33958506, 162312471, 781305581, 3784573140, 18435578714, 90261022638, 443956543235, 2192796266004, 10872208762458, 54095648185434, 270029668955605, 1351943521270155, 6787479872751732
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
    				
  • Mathematica
    Table[SeriesCoefficient[1/Product[x^k*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(n+3)/2}], {n, 0, 30}]

Formula

a(n) ~ c * d^n / n^2, where d = A258234 = 5.40087190411815415246609111910427005202943771019167057093170601448448... = r^2/(r-1), where r is the root of the equation polylog(2, 1-r) + log(r)^2 = 0, c = 2.578341962163260914344332458898614289944... .

A258268 Decimal expansion of a constant related to A206226.

Original entry on oeis.org

9, 1, 5, 3, 3, 7, 0, 1, 9, 2, 4, 5, 4, 1, 2, 2, 4, 6, 1, 9, 4, 8, 5, 3, 0, 2, 9, 2, 4, 0, 1, 3, 5, 4, 5, 4, 0, 0, 7, 3, 3, 2, 7, 2, 0, 4, 1, 2, 1, 8, 4, 8, 8, 4, 9, 6, 8, 9, 2, 6, 3, 2, 0, 1, 4, 7, 6, 1, 3, 8, 3, 7, 6, 6, 8, 9, 5, 7, 3, 1, 6, 2, 3, 9, 1, 5, 1, 9, 0, 2, 5, 5, 8, 7, 9, 5, 1, 9, 2, 8, 4, 5, 3, 8, 9
Offset: 1

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Examples

			9.153370192454122461948530292401354540073...
		

Crossrefs

Programs

  • Mathematica
    r^3/(r-1) /.FindRoot[-PolyLog[2, 1-r] == 3*Log[r]^2/2, {r, E}, WorkingPrecision->120] (* Vaclav Kotesovec, Jun 11 2015 *)

Formula

Equals limit n->infinity A206226(n)^(1/n).
Equals limit n->infinity A206227(n)^(1/n).
Equals limit n->infinity A206240(n)^(1/n).

Extensions

More digits from Vaclav Kotesovec, Jun 10 2015

A258191 Numerator of Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx.

Original entry on oeis.org

1, 11, 293, 487, 129952159, 13084761625, 8277192566411, 576489266167410341, 2154341459717480222819111, 1562388737113054944319018297, 4507453407946726622146977923716952747, 46170199302621715634236277404186409941, 20107953791404084220109855379873778475523352268948164789
Offset: 1

Views

Author

Vaclav Kotesovec, May 23 2015

Keywords

Comments

Limit n->infinity (a(n)/A258192(n))^(1/n) = 0.185155...
The limit is equal to 0.1851552893223595946473132111979542852738... = 1/5.400871904118154152466091119104270052029... (see A258234). - Vaclav Kotesovec, May 24 2015

Examples

			Product_{k=1..n} x^k*(1-x^k)
n=1 x - x^2
n=2 x^3 - x^4 - x^5 + x^6
n=3 x^6 - x^7 - x^8 + x^10 + x^11 - x^12
Integral Product_{k=1..n} x^k*(1-x^k) dx
n=1 x^2/2 - x^3/3
n=2 x^4/4 - x^5/5 - x^6/6 + x^7/7
n=3 x^7/7 - x^8/8 - x^9/9 + x^11/11 + x^12/12 - x^13/13
For Integral_{x=0..1} set x=1
n=1 1/2 - 1/3 = 1/6, a(1)=1
n=2 1/4 - 1/5 - 1/6 + 1/7 = 11/420, a(2)=11
n=3 1/7 - 1/8 - 1/9 + 1/11 + 1/12 - 1/13 = 293/72072, a(3)=293
		

Crossrefs

Programs

  • Mathematica
    nmax=15; p=1; Table[p=Expand[p*x^n*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Numerator

A258192 Denominator of Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx.

Original entry on oeis.org

6, 420, 72072, 760760, 1266697832400, 783333734619744, 3002950101013562700, 1253414030788528596187200, 27809824888100301666382826331840, 118802724769051077369996224554510800, 2005396188718644499811084404372455793370133120
Offset: 1

Views

Author

Vaclav Kotesovec, May 23 2015

Keywords

Comments

Limit n->infinity (A258191(n)/a(n))^(1/n) = 0.185155...
The limit is equal to 0.1851552893223595946473132111979542852738... = 1/5.400871904118154152466091119104270052029... (see A258234). - Vaclav Kotesovec, May 24 2015

Examples

			Product_{k=1..n} x^k*(1-x^k)
n=1 x - x^2
n=2 x^3 - x^4 - x^5 + x^6
n=3 x^6 - x^7 - x^8 + x^10 + x^11 - x^12
Integral Product_{k=1..n} x^k*(1-x^k) dx
n=1 x^2/2 - x^3/3
n=2 x^4/4 - x^5/5 - x^6/6 + x^7/7
n=3 x^7/7 - x^8/8 - x^9/9 + x^11/11 + x^12/12 - x^13/13
For Integral_{x=0..1} set x=1
n=1 1/2 - 1/3 = 1/6, a(1)=6
n=2 1/4 - 1/5 - 1/6 + 1/7 = 11/420, a(2)=420
n=3 1/7 - 1/8 - 1/9 + 1/11 + 1/12 - 1/13 = 293/72072, a(3)=72072
		

Crossrefs

Programs

  • Mathematica
    nmax=15; p=1; Table[p=Expand[p*x^n*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Denominator
Showing 1-6 of 6 results.