cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A258234 Decimal expansion of a constant related to A107379.

Original entry on oeis.org

5, 4, 0, 0, 8, 7, 1, 9, 0, 4, 1, 1, 8, 1, 5, 4, 1, 5, 2, 4, 6, 6, 0, 9, 1, 1, 1, 9, 1, 0, 4, 2, 7, 0, 0, 5, 2, 0, 2, 9, 4, 3, 7, 7, 1, 0, 1, 9, 1, 6, 7, 0, 5, 7, 0, 9, 3, 1, 7, 0, 6, 0, 1, 4, 4, 8, 4, 4, 8, 5, 1, 5, 9, 5, 0, 7, 5, 8, 1, 7, 7, 8, 9, 8, 8, 7, 4, 7, 9, 2, 0, 0, 0, 0, 6, 2, 0, 6, 2, 7, 7, 6, 7, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Comments

Limit n->infinity (Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx)^(1/n) = Limit n->infinity (A258191(n)/A258192(n))^(1/n) = 1/A258234 = 0.18515528932235959464731321119795428527382236445907508398560553036... .

Examples

			5.4008719041181541524660911191042700520294...
		

Crossrefs

Programs

  • Mathematica
    r^2/(r-1) /.FindRoot[-PolyLog[2, 1-r] == Log[r]^2, {r, E}, WorkingPrecision->117] (* Vaclav Kotesovec, Jun 11 2015 *)

Formula

Equals limit n->infinity A107379(n)^(1/n).
Equals limit n->infinity A173519(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Jun 09 2015

A258794 a(n) = [x^n] Product_{k=1..n} 1/(x^(2*k)*(1-x^k)^3).

Original entry on oeis.org

1, 10, 294, 10592, 433350, 19269768, 910578172, 45070219993, 2313935076132, 122371149279812, 6631958513821919, 366896706349540194, 20656935779581469141, 1180759136663178459661, 68388869189063880001236, 4007252716834400744174729, 237231272998203169561835387
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(2*k)*(1-x^k)^3, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^3, {x, 0, n*(n+2)}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / n^3, where d = 70.2047644028747363037741119300640924984352825702388550206966992563459... = r^5/(r-1)^3, where r is the root of the equation polylog(2, 1-r) + (5*log(r)^2)/6 = 0, c = 4.0416205700754156... .

A258789 a(n) = [x^n] Product_{k=1..n} 1/(x^(2*k)*(1-x^k)).

Original entry on oeis.org

1, 1, 5, 27, 169, 1115, 7760, 55748, 411498, 3101490, 23785645, 185064559, 1457664666, 11602828475, 93205739436, 754751603157, 6155229065861, 50515624923790, 416930705579538, 3458726257239312, 28825340825747729, 241245120218823892, 2026803168946440648
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
    				
  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(2*k)*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(n+2)}], {n, 0, 30}]

Formula

a(n) ~ c * d^n / n^2, where d = A258268 = 9.15337019245412246194853029240135454007332720412184884968926320147613... = r^3/(r-1), where r is the root of the equation polylog(2, 1-r) + 3*log(r)^2/2 = 0, c = 0.8069142856822510276258439534144172057548... .

A258790 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)).

Original entry on oeis.org

1, 1, 6, 48, 411, 3765, 36308, 363446, 3742085, 39405777, 422669224, 4603472960, 50790334667, 566603884871, 6381702580969, 72481863380510, 829331355150992, 9551576115706329, 110654552651370400, 1288710163262774157, 15080440970246785366, 177237948953055593475
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
    				
  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(3*n+5)/2}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / n^2, where d = 12.8718984948677835397002665286811919572579479691341210018008114644121... = r^4/(r-1), where r is the root of the equation polylog(2, 1-r) + 2*log(r)^2 = 0, c = 0.44720199058408831652920046766862756... .

A258791 a(n) = [x^n] Product_{k=1..n} 1/(x^k*(1-x^k)^2).

Original entry on oeis.org

1, 3, 20, 158, 1307, 11352, 102538, 954904, 9112038, 88723163, 878714118, 8829998320, 89848944237, 924291213496, 9600148608620, 100565064076006, 1061498376477423, 11281275452880277, 120635822090127386, 1297256892395670322, 14021436433125959714
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^k*(1-x^k)^2, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^2, {x, 0, n*(n+3)/2}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / n^(5/2), where d = 12.0708016857156441729965623654557363850943928675996965027830903372727... = r^3/(r-1)^2, where r is the root of the equation polylog(2, 1-r) + (3*log(r)^2)/4 = 0, c = 8.36819319541... .

A258792 a(n) = [x^n] Product_{k=1..n} 1/(x^k*(1-x^k)^3).

Original entry on oeis.org

1, 6, 69, 915, 12978, 194688, 3051617, 49526487, 826910754, 14135805042, 246508115583, 4372617452085, 78714369892152, 1435357362134796, 26472477913596486, 493178852479545556, 9270953614684288962, 175695092091980786166, 3354069936616380522256
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^k*(1-x^k)^3, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^3, {x, 0, n*(n+3)/2}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / n^3, where d = 22.0610202494679061193859054301626736218023392292898139172609021542610... = r^4/(r-1)^3, where r is the root of the equation polylog(2, 1-r) + (2*log(r)^2)/3 = 0, c = 20.953639522741... .

A258793 a(n) = [x^n] Product_{k=1..n} 1/(x^(2*k)*(1-x^k)^2).

Original entry on oeis.org

1, 4, 55, 896, 16494, 326422, 6812064, 147937628, 3315019979, 76184664934, 1787702723767, 42688437971038, 1034621287862521, 25398832816003228, 630502487733706193, 15805630063826901440, 399669931534045129915, 10184690536676439639278, 261340023300544414822171
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(2*k)*(1-x^k)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^2, {x, 0, n*(n+2)}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / n^(5/2), where d = 29.1694173246928561008040480794933198469510496062455151175744673506960... = r^4/(r-1)^2, where r is the root of the equation polylog(2, 1-r) + log(r)^2 = 0, c = 2.0036140319464... .

A258795 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^2).

Original entry on oeis.org

1, 5, 112, 3216, 104112, 3661517, 136580866, 5323418568, 214685704402, 8897404908604, 377068336570902, 16280261371485594, 714081427614467553, 31747177836376617322, 1428084942303149795972, 64902413675181889657064, 2976483322906106920966911
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^2, {x, 0, n*(3*n+5)/2}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / n^(5/2), where d = 53.0676066669703028123492951828168330443393201750491213178019371417684... = r^5/(r-1)^2, where r is the root of the equation polylog(2, 1-r) + (5*log(r)^2)/4 = 0, c = 0.983501005499107... .

A258796 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^3).

Original entry on oeis.org

1, 15, 882, 67385, 5938518, 575782833, 59765085601, 6529604684991, 742474127495175, 87176531917206953, 10508492822243329854, 1294860745291809207237, 162553748258042032103013, 20735748733960087597815855, 2682101373558320853655174803
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k)^3, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^3, {x, 0, n*(3*n+5)/2}], {n, 0, 20}]

Formula

a(n) ~ c * d^n / n^3, where d = 157.540286488430979726276374519534734829527107090287337321136938826336... = r^6/(r-1)^3, where r is the root of the equation polylog(2, 1-r) + log(r)^2 = 0, c = 1.797864597437050667... .
Showing 1-9 of 9 results.