cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320932 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} Sum_{m>=0} x^(k*m^2).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 20, 51, 141, 381, 1001, 2796, 7861, 22306, 64129, 185692, 540468, 1585246, 4674464, 13846636, 41216933, 123176849, 369410571, 1111661833, 3355466306, 10156304314, 30821794651, 93761053797, 285859742756, 873355481467, 2673455511946, 8198687383812
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2018

Keywords

Comments

Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.

Examples

			1*1^2 + 2*1^2 + 3*1^2 + 4*1^2 + 5*1^2 = 15.
1*2^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*1^2 = 15.
1*0^2 + 2*2^2 + 3*1^2 + 4*1^2 + 5*0^2 = 15.
1*3^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*0^2 = 15.
1*1^2 + 2*1^2 + 3*2^2 + 4*0^2 + 5*0^2 = 15.
1*2^2 + 2*2^2 + 3*1^2 + 4*0^2 + 5*0^2 = 15.
So a(5) = 6.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else b(n, i-1); for j while
            i*j^2<=n do %+b(n-i*j^2, i-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 28 2018
  • Mathematica
    nmax = 30; Table[SeriesCoefficient[Product[(EllipticTheta[3, 0, x^k] + 1)/2, {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
  • PARI
    {a(n) = polcoeff(prod(i=1, n, sum(j=0, sqrtint(n*(n+1)\(2*i)), x^(i*j^2)+x*O(x^(n*(n+1)/2)))), n*(n+1)/2)}

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function.

A321179 a(n) = [x^(n^2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 14, 44, 174, 988, 4314, 20780, 126320, 692328, 3836166, 23160914, 135752866, 803203484, 4902966108, 29745996950, 181712320506, 1124481497694, 6965802854354, 43360326335154, 271658784580760, 1706393926177980, 10757142052998054, 68081390206251952, 432001821971576352
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n^2.

Examples

			Solutions (a_1, a_2, a_3) to the equation a_1^2 + 2*a_2^2 + 3*a_3^2 = 9.
------------------------------------------------------------------------
( 1,  2,  0), ( 1, -2,  0),
(-1,  2,  0), (-1, -2,  0),
( 2,  1,  1), ( 2,  1, -1),
( 2, -1,  1), ( 2, -1, -1),
(-2,  1,  1), (-2,  1, -1),
(-2, -1,  1), (-2, -1, -1),
( 3,  0,  0), (-3,  0,  0).
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n^2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
  • PARI
    {a(n) = polcoeff(prod(i=1, n, 1+2*sum(j=1, sqrtint(n^2\i), x^(i*j^2)+x*O(x^(n^2)))), n^2)}

Formula

a(n) ~ c * d^n / n^(7/4), where d = 6.8137220913147... and c = 0.178176349247... - Vaclav Kotesovec, Oct 30 2018
Showing 1-2 of 2 results.