A066655
Number of partitions of n*(n-1)/2.
Original entry on oeis.org
1, 1, 3, 11, 42, 176, 792, 3718, 17977, 89134, 451276, 2323520, 12132164, 64112359, 342325709, 1844349560, 10015581680, 54770336324, 301384802048, 1667727404093, 9275102575355, 51820051838712, 290726957916112, 1637293969337171, 9253082936723602
Offset: 1
-
Table[PartitionsP[n(n-1)/2], {n, 1, 30}]
-
combinat::partitions::count(binomial(n+2,n)) $n=-1..40 // Zerinvary Lajos, Apr 16 2007
-
a(n) = numbpart(n*(n-1)/2); \\ Michel Marcus, Dec 18 2017
A104382
Triangle, read by rows, where T(n,k) equals number of distinct partitions of triangular number n*(n+1)/2 into k different summands for n>=k>=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 12, 6, 1, 1, 10, 27, 27, 10, 1, 1, 13, 52, 84, 57, 14, 1, 1, 17, 91, 206, 221, 110, 21, 1, 1, 22, 147, 441, 674, 532, 201, 29, 1, 1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1, 1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1, 1, 38, 469
Offset: 1
Rows begin:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 7, 12, 6, 1;
1, 10, 27, 27, 10, 1;
1, 13, 52, 84, 57, 14, 1;
1, 17, 91, 206, 221, 110, 21, 1;
1, 22, 147, 441, 674, 532, 201, 29, 1;
1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1;
1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1; ...
- Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
A126683
Number of partitions of the n-th triangular number n(n+1)/2 into distinct odd parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 16, 33, 68, 144, 312, 686, 1523, 3405, 7652, 17284, 39246, 89552, 205253, 472297, 1090544, 2525904, 5867037, 13663248, 31896309, 74628130, 174972341, 411032475, 967307190, 2280248312, 5383723722, 12729879673, 30141755384, 71462883813
Offset: 0
The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
Sequences
A066655 and
A104383 do the same thing for triangular numbers, with partitions or distinct partitions. Sequences
A072213 and
A072243 are analogs for squares rather than triangular numbers.
-
g:= mul(1+x^(2*j+1),j=0..900): seq(coeff(g,x,n*(n+1)/2),n=0..40); # Emeric Deutsch, Feb 27 2007
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2n, 0, b(n-2*i+1, i-1))))
end:
a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2018
-
a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)
A299032
Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.
Original entry on oeis.org
1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0
a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
Cf.
A000217,
A000290,
A066535,
A072964,
A104383,
A126683,
A196010,
A224677,
A224679,
A278340,
A288126,
A298330,
A298858,
A298939,
A299031.
-
b:= proc(n, t) option remember; local i; if n=0 then
`if`(t=0, 1, 0) elif t<1 then 0 else 0;
for i while i^2<=n do %+b(n-i^2, t-1) od; % fi
end:
a:= n-> b(n*(n+1)/2, n):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 05 2018
-
Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]
A299031
Number of ordered ways of writing n-th triangular number as a sum of n squares of nonnegative integers.
Original entry on oeis.org
1, 1, 0, 3, 18, 60, 252, 1576, 10494, 64152, 458400, 3407019, 27713928, 225193982, 1980444648, 17626414158, 165796077562, 1593587604441, 15985672426992, 163422639872978, 1729188245991060, 18743981599820280, 208963405365941380, 2378065667103672024, 27742569814633730608
Offset: 0
a(3) = 3 because third triangular number is 6 and we have [4, 1, 1], [1, 4, 1] and [1, 1, 4].
Cf.
A000217,
A000290,
A066535,
A072964,
A104383,
A126683,
A196010,
A224677,
A224679,
A278340,
A288126,
A298329,
A298858,
A298938,
A299032.
-
Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]
Showing 1-5 of 5 results.
Comments