cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Harry Richman

Harry Richman's wiki page.

Harry Richman has authored 16 sequences. Here are the ten most recent ones:

A366040 Irregular triangle read by rows: T(n,k) = number of cells of dimension k in the tropical Schottky locus of genus n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 2, 2, 1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4
Offset: 2

Author

Harry Richman, Oct 23 2023

Keywords

Comments

Row n has 3n + 1 entries, for 0 <= k <= 3n.

Examples

			The irregular triangle T(n,k) begins:
n\k  0  1  2  3  4  5  6   7   8   9  10 11 12...
2:   1, 1, 1, 1;
3:   1, 1, 1, 2, 2, 1, 1;
4:   1, 1, 1, 2, 3, 4, 5,  4,  2,  2;
5:   1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4;
...
		

Crossrefs

Row sums are A220444.

A366039 Irregular triangle read by rows: T(n,k) = number of cells of dimension k in the moduli space of tropical curves of genus n.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 5, 9, 12, 8, 5, 1, 3, 7, 21, 43, 75, 89, 81, 42, 17, 1, 3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71
Offset: 2

Author

Harry Richman, Oct 23 2023

Keywords

Comments

Row n has 3n + 1 entries, for 0 <= k <= 3n.

Examples

			The irregular triangle T(n,k) begins:
n\k  0   1   2   3    4    5    6    7     8    9   10   11  12...
2:   1,  2,  2,  2;
3:   1,  2,  5,  9,  12,   8,   5;
4:   1,  3,  7, 21,  43,  75,  89,  81,   42,  17;
5:   1,  3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71;
...
		

Crossrefs

Last entry in each row is A005967.
Row sums are A174224.

A364441 Number of facets of the balanced minimum evolution polytope on n species.

Original entry on oeis.org

3, 52, 90262
Offset: 4

Author

Harry Richman, Jul 24 2023

Keywords

Comments

The balanced minimum evolution (BME) polytope of order n is a polytope in binomial(n, 2)-dimensional space whose vertices are indexed by bifurcating phylogenetic trees on n species. The coordinates of the ambient space are indexed by pairs (i, j) of distinct species, and at a vertex corresponding to tree T, the value at coordinate (i, j) is equal to 2^-k(i, j) where k(i, j) is the number of internal nodes on the path from i to j in T.

Crossrefs

Cf. A364505.

A364505 T(n, k) = number of k-dimensional faces in the BME polytope on n species, 0 <= k <= binomial(n, 2) - n.

Original entry on oeis.org

3, 3, 1, 15, 105, 250, 210, 52, 1, 105, 5460, 105945, 635265, 1715455, 2373345, 1742445, 640140, 90262, 1
Offset: 4

Author

Harry Richman, Jul 26 2023

Keywords

Comments

The balanced minimum evolution (BME) polytope of order n is the convex hull of the BME vectors of all phylogenetic trees on n species. The BME polytope of order n has dimension binomial(n, 2) - n.

Examples

			Table begins:
    3,    3,      1;
   15,  105,    250,    210,      52,       1;
  105, 5460, 105945, 635265, 1715455, 2373345, 1742445, 640140, 90262, 1;
		

Crossrefs

First column T(n, 0) is A001147.
Next-to-last entry T(n, binomial(n, 2) - n - 1) in each row is A364441.

A363273 Irregular triangle read by rows: T(n,k) = number of unlabeled binary rooted trees with n leaves, where both children have at least k leaves, 1 <= k <= n/2.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 6, 3, 1, 11, 5, 2, 23, 12, 6, 3, 46, 23, 12, 6, 98, 52, 29, 18, 6, 207, 109, 63, 40, 18, 451, 244, 146, 100, 54, 21, 983, 532, 325, 227, 135, 66, 2179, 1196, 745, 538, 342, 204, 66, 4850, 2671, 1688, 1237, 823, 529, 253, 10905, 6055, 3876, 2893, 1991, 1370, 782, 276
Offset: 2

Author

Harry Richman, May 24 2023

Keywords

Examples

			Table begins:
  1;
  1;
  2,   1;
  3,   1;
  6,   3,  1;
 11,   5,  2;
 23,  12,  6,  3;
 46,  23, 12,  6;
 98,  52, 29, 18,  6;
207, 109, 63, 40, 18;
...
		

Crossrefs

First column k = 1 is A001190.
Sums along upwards diagonals are A000671.
Cf. A363272.

Programs

  • PARI
    T(n)={my(A=vector(n), R=vector(n)); A[1]=1; R[1]=[]; for(i=2, n, my(t=vector(i\2, j, if(2*jAndrew Howroyd, Jan 01 2024

Formula

T(n,k) = Sum_{j >= k} A363272(n,j).
Sum_{k >= 1} T(n-k, k) = A000671(n-2).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Jan 01 2024

A363272 Irregular triangle read by rows: T(n,k) = number of unlabeled binary rooted trees with n leaves, where some child tree has k leaves, 1 <= k <= n/2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 2, 11, 6, 3, 3, 23, 11, 6, 6, 46, 23, 11, 12, 6, 98, 46, 23, 22, 18, 207, 98, 46, 46, 33, 21, 451, 207, 98, 92, 69, 66, 983, 451, 207, 196, 138, 138, 66, 2179, 983, 451, 414, 294, 276, 253, 4850, 2179, 983, 902, 621, 588, 506, 276
Offset: 2

Author

Harry Richman, May 24 2023

Keywords

Examples

			Table begins:
 1;
 1;
 1,  1;
 2,  1;
 3,  2,  1;
 6,  3,  2;
11,  6,  3,  3;
23, 11,  6,  6;
46, 23, 11, 12,  6;
98, 46, 23, 22, 18;
...
		

Crossrefs

Row sums are A001190.
First column k=1 is T(n,1) = A001190(n-1).

Programs

  • PARI
    T(n)={my(A=vector(n), R=vector(n)); A[1]=1; R[1]=[]; for(i=2, n, R[i] = vector(i\2, j, if(2*jAndrew Howroyd, Jan 01 2024

Formula

T(n,k) = A001190(k) * A001190(n-k) if k < n/2; otherwise
T(2k,k) = A001190(k) * (A001190(k) + 1) / 2 = A000217(A001190(n)).
Sum_{k >= 1} T(n,k) = A001190(n).
Sum_{i >= k} T(n,i) = A363273(n,k).
Sum_{i <= n-1, i+j >= n} T(i,j) = A000671(n-2).

Extensions

Terms a(32) and beyond from Andrew Howroyd, Jan 01 2024

A363257 a(n) = floor( ((a(n-1) + 1) / 2)^2 ) + 1 for n >= 1, with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 31, 257, 16642, 69247363, 1198799355237125, 359279973529237254190922184970, 32270524844792355518177347536627638351478874995525184567711
Offset: 0

Author

Harry Richman, May 23 2023

Keywords

Comments

Iterated application of A033638, with a shift.

Crossrefs

Programs

  • PARI
    a(n) = if(n < 1, 0, floor( ((a(n-1) + 1) / 2)^2 ) + 1) \\ Andrew Howroyd, Jan 01 2024

Formula

a(n) = A033638(a(n-1)+1) for n > 0.
log a(n) ~ C * 2^n for some constant C.

A360079 Finite differences of Moebius function for the floor quotient poset.

Original entry on oeis.org

1, -2, 0, 1, 0, 1, 0, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2
Offset: 1

Author

Harry Richman, Jan 24 2023

Keywords

Comments

a(n) = mu(n) - mu(n-1), where mu(n) = A360078(n) is the Moebius function of the floor quotient poset.

Crossrefs

Programs

  • Haskell
    isFQ d n = (n `div` (n `div` d)) == d
    fqMobius 1 = 1
    fqMobius n = - sum [fqMobius d | d <- [1..(n-1)], d `isFQ` n]
    a360079 1 = 1
    a360079 n = fqMobius n - fqMobius (n-1)
    -- Harry Richman, Jun 13 2025
  • Mathematica
    LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}] . Table[If[i >= j, 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); vector(#v, i, v[i]-if(i>1, v[i-1]))} \\ Andrew Howroyd, Jan 24 2023
    

A360078 Moebius function for the floor quotient poset.

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, 0, 0, -1, -1, -1, -2, -2, -2, -2, -3, -3, -3, -3, -3, -1, -1, -1, -1, -1, -1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Author

Harry Richman, Jan 24 2023

Keywords

Comments

Say d is a "floor quotient" of n if d = [n/k] for some positive integer k. This defines a partial order relation on the positive integers. This sequence records the Moebius function values of this poset.

Examples

			For n = 9, the set of floor quotients of 9 are Q(9) = {1, 2, 3, 4, 9} with Moebius values a(1) = 1, a(2) = -1, a(3) = -1, and a(4) = 0. The Moebius recursion requires that the Moebius values summed over Q(9) must equal zero, so a(9) = 1.
		

Crossrefs

Programs

  • Haskell
    isFQ d n = (n `div` (n `div` d)) == d
    a360078 1 = 1
    a360078 n = - sum [a360078 d | d <- [1..(n-1)], d `isFQ` n]
    -- Harry Richman, Jun 13 2025
  • Mathematica
    LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); v} \\ Andrew Howroyd, Jan 24 2023
    

A351167 Partial sums of A350682.

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -3, -4, -4, -3, -4, -4, -4, -4, -3, -3, -4, -4, -3, -4, -4, -4, -5, -5, -5, -6, -6, -6, -7, -7, -7, -8, -8, -7, -7, -7, -7, -8, -6, -6, -7, -7, -6, -7, -7, -7, -8, -8, -7, -5, -4, -4, -5, -4, -3, -4, -4, -3, -3, -2, -2, -3, -3, -3, -4, -4, -4, -5, -5, -4, -5, -4, -4, -4, -4, -4, -5, -5, -4, -5, -5, -5, -6, -6, -5, -5, -5, -5, -6, -6, -6, -7, -7, -7, -7
Offset: 1

Author

Rohan Pandey, Harry Richman, Feb 03 2022

Keywords

Comments

Partial sums of Möbius values of triangular numbers under divisibility relation.

Crossrefs

Programs

  • Mathematica
    Accumulate@ With[{m = 100}, LinearSolve[Table[If[Mod[i (i + 1), j (j + 1)] == 0, 1, 0], {i, m}, {j, m}], UnitVector[m, 1]]] (* Michael De Vlieger, Feb 04 2022, after Harry Richman at A350682 *)
  • PARI
    lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; my(w = vector(nn, k, m[k, 1])); vector(nn-1, k, sum(i=1, k, w[i]));} \\ Michel Marcus, Feb 16 2022
  • Python
    from sympy import *
    triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)])
    def Mobius_Matrix(lst):
        zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst]
        return Matrix(zeta_array) ** -1
    M = Mobius_Matrix(triangular_numbers)
    N = M[0, :].tolist()
    def sum_function(lst):
        sum_list = [sum(lst[:i+1]) for i in range(len(lst))]
        return sum_list
    S = sum_function(N[0])
    print(S)