cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rohan Pandey

Rohan Pandey's wiki page.

Rohan Pandey has authored 2 sequences.

A351167 Partial sums of A350682.

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -3, -4, -4, -3, -4, -4, -4, -4, -3, -3, -4, -4, -3, -4, -4, -4, -5, -5, -5, -6, -6, -6, -7, -7, -7, -8, -8, -7, -7, -7, -7, -8, -6, -6, -7, -7, -6, -7, -7, -7, -8, -8, -7, -5, -4, -4, -5, -4, -3, -4, -4, -3, -3, -2, -2, -3, -3, -3, -4, -4, -4, -5, -5, -4, -5, -4, -4, -4, -4, -4, -5, -5, -4, -5, -5, -5, -6, -6, -5, -5, -5, -5, -6, -6, -6, -7, -7, -7, -7
Offset: 1

Author

Rohan Pandey, Harry Richman, Feb 03 2022

Keywords

Comments

Partial sums of Möbius values of triangular numbers under divisibility relation.

Crossrefs

Programs

  • Mathematica
    Accumulate@ With[{m = 100}, LinearSolve[Table[If[Mod[i (i + 1), j (j + 1)] == 0, 1, 0], {i, m}, {j, m}], UnitVector[m, 1]]] (* Michael De Vlieger, Feb 04 2022, after Harry Richman at A350682 *)
  • PARI
    lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; my(w = vector(nn, k, m[k, 1])); vector(nn-1, k, sum(i=1, k, w[i]));} \\ Michel Marcus, Feb 16 2022
  • Python
    from sympy import *
    triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)])
    def Mobius_Matrix(lst):
        zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst]
        return Matrix(zeta_array) ** -1
    M = Mobius_Matrix(triangular_numbers)
    N = M[0, :].tolist()
    def sum_function(lst):
        sum_list = [sum(lst[:i+1]) for i in range(len(lst))]
        return sum_list
    S = sum_function(N[0])
    print(S)
    

A350682 Möbius values of triangular numbers under divisibility relation.

Original entry on oeis.org

1, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 2, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 2, 1, 0, -1, 1, 1, -1, 0, 1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0
Offset: 1

Author

Rohan Pandey, Harry Richman, Jan 11 2022

Keywords

Comments

Consider the partial order whose elements are the triangular numbers (T(n) (A000217)) and whose order relation is integer divisibility. Then a(n) is the value mu(T(1), T(n)) of the Möbius function of this partial order.

Crossrefs

Programs

  • Mathematica
    ZetaM = Table[If[Mod[i*(i + 1), j*(j + 1)] == 0, 1, 0], {i, 100}, {j, 100}];
    MobiusM = LinearSolve[ZetaM, UnitVector[100, 1]] (* Harry Richman, Jan 23 2022 *)
  • PARI
    lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; vector(nn, k, m[k, 1]);} \\ Michel Marcus, Jan 19 2022
  • Python
    from sympy import *
    triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)])
    def Mobius_Matrix(lst):
        zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst]
        return Matrix(zeta_array) ** -1
    M = Mobius_Matrix(triangular_numbers)
    N = M[0, :].tolist()
    print(N[0])