A001106
9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
Original entry on oeis.org
0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (1000 terms were computed by T. D. Noe)
- S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 343
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Nonagonal Number.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
-- Reinhard Zumkeller, Jan 23 2012
-
a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
-
Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
-
a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
-
def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 7, y + 7
A001106 = aList()
print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019
A022264
a(n) = n*(7*n - 1)/2.
Original entry on oeis.org
0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0
Cf. similar sequences listed in
A022288.
A024966
7 times triangular numbers: 7*n*(n+1)/2.
Original entry on oeis.org
0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0
Joe Keane (jgk(AT)jgk.org), Dec 11 1999
-
[ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
[seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
-
7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
-
x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A179986
Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.
Original entry on oeis.org
0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0
-
[n*(7*n+5)/2: n in [0..50]]; // Bruno Berselli, Sep 23 2016
-
I:=[0, 6, 19]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..60]]; // Vincenzo Librandi, Oct 15 2012
-
f[n_] := n (7 n + 5)/2; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 6, 19}, 60] (* or *) Array[(#(7# + 5))/2&, 60, 0] (* Harvey P. Dale, Aug 19 2011 *)
CoefficientList[Series[x (6 + x)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2012 *)
-
a(n)=n*(7*n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
A186029
a(n) = n*(7*n+3)/2.
Original entry on oeis.org
0, 5, 17, 36, 62, 95, 135, 182, 236, 297, 365, 440, 522, 611, 707, 810, 920, 1037, 1161, 1292, 1430, 1575, 1727, 1886, 2052, 2225, 2405, 2592, 2786, 2987, 3195, 3410, 3632, 3861, 4097, 4340, 4590, 4847, 5111, 5382, 5660, 5945, 6237, 6536, 6842, 7155, 7475
Offset: 0
From _Ilya Gutkovskiy_, Mar 31 2016: (Start)
. o o o o o o o o o o o o
. o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o o o o o o o o o
.
. n=1 n=2 n=3 n=4
(End)
Cf. numbers of the form n*(d*n+10-d)/2 indexed in
A140090.
-
[n*(7*n+3)/2: n in [0..44]];
-
Table[(n - 1) (7 n - 4)/2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3,-3,1},{0,5,17},50] (* Harvey P. Dale, Sep 07 2022 *)
-
a(n)=n*(7*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
A218470
Partial sums of floor(n/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0
As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
[&+[Floor(k/9): k in [0..n]]: n in [0..70]]; // Bruno Berselli, Mar 27 2013
-
Accumulate[Floor[Range[0, 100]/9]] (* Jean-François Alcover, Mar 27 2013 *)
-
for(n=0,50, print1(sum(k=0,n, floor(k/9)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\9); k*(9*k-7)/2 + k*(n-9*k) \\ Charles R Greathouse IV, Dec 13 2016
A022265
a(n) = n*(7*n + 1)/2.
Original entry on oeis.org
0, 4, 15, 33, 58, 90, 129, 175, 228, 288, 355, 429, 510, 598, 693, 795, 904, 1020, 1143, 1273, 1410, 1554, 1705, 1863, 2028, 2200, 2379, 2565, 2758, 2958, 3165, 3379, 3600, 3828, 4063, 4305, 4554, 4810
Offset: 0
From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
4 = -(1) + (2 + 3).
15 = -(1 + 2) + (3 + 4 + 5 + 6).
33 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9).
58 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + 9 + 10 + 11 + 12). (End)
Cf. similar sequences listed in
A022289.
-
seq(binomial(7*n+1,2)/7, n=0..37); # Zerinvary Lajos, Jan 21 2007
seq(binomial(6*n+1,2)/3-binomial(5*n+1,2)/5, n=0..42); # Zerinvary Lajos, Jan 21 2007
-
Table[n (7 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
LinearRecurrence[{3,-3,1},{0,4,15},40] (* Harvey P. Dale, Oct 09 2018 *)
-
a(n)=n*(7*n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
A118729
Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0
Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006
The array starts, with row r=0, as
r=0: 0 0 0 0 0 0 0 0;
r=1: 1 2 3 4 5 6 7 8;
r=2: 10 12 14 16 18 20 22 24;
r=3: 27 30 33 36 39 42 45 48;
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- LeetCode, 3014. Minimum Number of Pushes to Type Word I.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)
Redefined as a rectangular tabf array and description simplified by
R. J. Mathar, Oct 20 2010
A218471
a(n) = n*(7*n-3)/2.
Original entry on oeis.org
0, 2, 11, 27, 50, 80, 117, 161, 212, 270, 335, 407, 486, 572, 665, 765, 872, 986, 1107, 1235, 1370, 1512, 1661, 1817, 1980, 2150, 2327, 2511, 2702, 2900, 3105, 3317, 3536, 3762, 3995, 4235, 4482, 4736, 4997, 5265, 5540, 5822, 6111, 6407, 6710, 7020, 7337
Offset: 0
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A226488 (this sequence is the case k=7). -
Bruno Berselli, Jun 10 2013
-
List([0..50], n-> n*(7*n-3)/2); # G. C. Greubel, Aug 31 2019
-
[n*(7*n-3)/2: n in [0..50]]; // G. C. Greubel, Aug 31 2019
-
seq(n*(7*n-3)/2, n=0..50); # G. C. Greubel, Aug 31 2019
-
Table[n*(7*n-3)/2, {n,0,50}] (* G. C. Greubel, Aug 23 2017 *)
-
a(n)=n*(7*n-3)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(7*n-3)/2 for n in (0..50)] # G. C. Greubel, Aug 31 2019
Showing 1-10 of 16 results.
Comments