cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001106 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.

Original entry on oeis.org

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the parallel line from 1, in the direction 1, 24, ..., in the square spiral whose vertices are the generalized 9-gonal (enneagonal) numbers A118277. Also sequence found by reading the same lines in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and x+y <= n. - Reinhard Zumkeller, Jan 23 2012
Partial sums give A007584. - Omar E. Pol, Jan 15 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=2). Partial sums of A016993.

Programs

  • Haskell
    a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Haskell
    a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
    
  • Mathematica
    Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 7, y + 7
    A001106 = aList()
    print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = (7*n - 5)*n/2.
G.f.: x*(1+6*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = n + 7*A000217(n-1). - Floor van Lamoen, Oct 14 2005
Starting (1, 9, 24, 46, 75, ...) gives the binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
Row sums of triangle A131875 starting (1, 9, 24, 46, 75, 111, ...). A001106 = binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 9. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 7. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 7*n - 6 (with a(0) = 0). - Vincenzo Librandi, Nov 12 2010
a(n) = A174738(7n). - Philippe Deléham, Mar 26 2013
a(7*a(n) + 22*n + 1) = a(7*a(n) + 22*n) + a(7*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 7*x)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n+2) + A000217(n) = (2*n+3)^2. - Ezhilarasu Velayutham, Mar 18 2020
Product_{n>=2} (1 - 1/a(n)) = 7/9. - Amiram Eldar, Jan 21 2021
Sum_{n>=1} 1/a(n) = A244646. - Amiram Eldar, Nov 12 2021
a(n) = A000217(3*n-2) - (n-1)^2. - Charlie Marion, Feb 27 2022
a(n) = 3*A000217(n) + 2*A005563(n-2). In general, if P(k,n) = the n-th k-gonal number, then P(m*k,n) = m*P(k,n) + (m-1)*A005563(n-2). - Charlie Marion, Feb 21 2023

A022264 a(n) = n*(7*n - 1)/2.

Original entry on oeis.org

0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., and the parallel line from 3, in the direction 3, 30, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 09 2011

Crossrefs

Cf. sequences listed in A254963.
Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = C(7*n,2)/7, n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = A049450(n) + A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = 7*n + a(n-1) - 4 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = (2*n)^2 - n*(n+1)/2 = A016742(n) - A000217(n). - Philippe Deléham, Mar 08 2013
a(n) = A174738(7*n+2). - Philippe Deléham, Mar 26 2013
G.f.: x*(3 + 4*x)/(1 - x)^3. - R. J. Mathar, Aug 04 2016
a(n) = A000217(4*n-1) - A000217(3*n-1). - Bruno Berselli, Oct 17 2016
a(n) = (1/5) * Sum_{i=n..(6*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
E.g.f.: (1/2)*x*(7*x + 6)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = A005449(n) + A000384(n). See Crysta-gons illustration. - Leo Tavares, Nov 21 2021

A024966 7 times triangular numbers: 7*n*(n+1)/2.

Original entry on oeis.org

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ... and the same line from 0, in the direction 1, 21, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the main diagonal in the spiral. - Omar E. Pol, Sep 09 2011
Also sequence found by reading the same line mentioned above in the square spiral whose vertices are the generalized enneagonal numbers A118277. Axis perpendicular to A195145 in the same spiral. - Omar E. Pol, Sep 18 2011
Sequence provides all integers m such that 56*m + 49 is a square. - Bruno Berselli, Oct 07 2015
Sum of the numbers from 3*n to 4*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

  • Magma
    [ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
    Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
    Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
    7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015

Formula

a(n) = (7/2)*n*(n+1).
G.f.: 7*x/(1-x)^3.
a(n) = (7*n^2 + 7*n)/2 = 7*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 7*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = A069099(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n-1), a(n+2) = A193053(n+2) + 2*A193053(n+1) + A193053(n). - Bruno Berselli, Oct 21 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 21.
a(n) = A174738(7*n+6).
a(n) = A179986(n) + n = A186029(n) + 2*n = A022265(n) + 3*n = A022264(n) + 4*n = A218471(n) + 5*n = A001106(n) + 6*n. (End)
a(n) = Sum_{i=3*n..4*n} i. - Wesley Ivan Hurt, Dec 22 2015
E.g.f.: (7/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/7)*(2*log(2) - 1). (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(7/(2*Pi))*cos(sqrt(15/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/(2*Pi))*cosh(Pi/(2*sqrt(7))). (End)

A131242 Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0

Views

Author

Hieronymus Fischer, Jun 21 2007

Keywords

Comments

Complementary with A130488 regarding triangular numbers, in that A130488(n)+10*a(n)=n(n+1)/2=A000217(n).

Examples

			As square array :
    0,   0,   0,   0,   0,   0,   0,   0,   0,    0
    1,   2,   3,   4,   5,   6,   7,   8,   9,   10
   12,  14,  16,  18,  20,  22,  24,  26,  28,   30
   33,  36,  39,  42,  45,  48,  51,  54,  57,   60
   64,  68,  72,  76,  80,  84,  88,  92,  96,  100
  105, 110, 115, 120, 125, 130, 135, 140, 145,  150
  156, 162, 168, 174, 180, 186, 192, 198, 204,  210
... - _Philippe Deléham_, Mar 27 2013
		

Crossrefs

Programs

  • Mathematica
    Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
    Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
  • PARI
    for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
    
  • PARI
    a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = (1/2)*floor(n/10)*(2n-8-10*floor(n/10)).
a(n) = A059995(n)*(2n-8-10*A059995(n))/2.
a(n) = (1/2)*A059995(n)*(n-8+A010879(n)).
a(n) = (n-A010879(n))*(n+A010879(n)-8)/20.
G.f.: x^10/((1-x^10)(1-x)^2).
From Philippe Deléham, Mar 27 2013: (Start)
a(10n) = A051624(n).
a(10n+1) = A135706(n).
a(10n+2) = A147874(n+1).
a(10n+3) = 2*A005476(n).
a(10n+4) = A033429(n).
a(10n+5) = A202803(n).
a(10n+6) = A168668(n).
a(10n+7) = 2*A147875(n).
a(10n+8) = A135705(n).
a(10n+9) = A124080(n). (End)
a(n) = A008728(n-10) for n>= 10. - Georg Fischer, Nov 03 2018

A179986 Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.

Original entry on oeis.org

0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2011

Keywords

Comments

This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019

Crossrefs

Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12).

Programs

Formula

G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014
a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017

A186029 a(n) = n*(7*n+3)/2.

Original entry on oeis.org

0, 5, 17, 36, 62, 95, 135, 182, 236, 297, 365, 440, 522, 611, 707, 810, 920, 1037, 1161, 1292, 1430, 1575, 1727, 1886, 2052, 2225, 2405, 2592, 2786, 2987, 3195, 3410, 3632, 3861, 4097, 4340, 4590, 4847, 5111, 5382, 5660, 5945, 6237, 6536, 6842, 7155, 7475
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2011

Keywords

Comments

This sequence is related to A050409 by A050409(n) = n*a(n) - Sum_{i=0..n-1} a(i).

Examples

			From _Ilya Gutkovskiy_, Mar 31 2016: (Start)
.                                           o o o o o o o o o o o o
.                                           o                     o
.         o o o o o o   o  o o o o o o  o   o  o  o o o o o o  o  o
.         o         o   o  o         o  o   o  o  o         o  o  o
. o   o   o  o   o  o   o  o  o   o  o  o   o  o  o  o   o  o  o  o
. o o o   o  o o o  o   o  o  o o o  o  o   o  o  o  o o o  o  o  o
.                       o               o   o  o               o  o
.                       o o o o o o o o o   o  o o o o o o o o o  o
.
.  n=1        n=2              n=3                    n=4
(End)
		

Crossrefs

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.
Cf. A017041 (first differences).

Programs

Formula

G.f.: x*(5+2*x)/(1-x)^3.
a(n) - a(-n) = A008585(n).
a(n) + a(-n) = A033582(n).
n*a(n+1) - (n+1)*a(n) = A024966(n). - Bruno Berselli, May 30 2012
n*a(n+2) - (n+2)*a(n) = A067727(n) for n>0. - Bruno Berselli, May 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=17. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7*n+4). - Philippe Deléham, Mar 26 2013
E.g.f.: (1/2)*(7*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A218470 Partial sums of floor(n/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2013

Keywords

Comments

Apart from the initial zeros, the same as A008727.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
		

Crossrefs

Cf. similar sequences: A118729, A174109, A174738.

Programs

Formula

a(9n) = A051682(n).
a(9n+1) = A062708(n).
a(9n+2) = A062741(n).
a(9n+3) = A022266(n).
a(9n+4) = A022267(n).
a(9n+5) = A081266(n).
a(9n+6) = A062725(n).
a(9n+7) = A062728(n).
a(9n+8) = A027468(n).
G.f.: x^9/((1-x)^2*(1-x^9)). - Bruno Berselli, Mar 27 2013

A022265 a(n) = n*(7*n + 1)/2.

Original entry on oeis.org

0, 4, 15, 33, 58, 90, 129, 175, 228, 288, 355, 429, 510, 598, 693, 795, 904, 1020, 1143, 1273, 1410, 1554, 1705, 1863, 2028, 2200, 2379, 2565, 2758, 2958, 3165, 3379, 3600, 3828, 4063, 4305, 4554, 4810
Offset: 0

Views

Author

Keywords

Comments

For n >= 4, a(n) is the sum of the numbers appearing in the 4th row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Examples

			From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
4  =       -(1)       +             (2 + 3).
15 =     -(1 + 2)     +         (3 + 4 + 5 + 6).
33 =   -(1 + 2 + 3)   +     (4 + 5 + 6 + 7 + 8 + 9).
58 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + 9 + 10 + 11 + 12). (End)
		

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 3) for n>2.
a(n) = A049453(n) - A005475(n). - Zerinvary Lajos, Jan 21 2007
a(n) = 7*n + a(n-1) - 3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=0, a(1)=4, a(2)=15. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7n+3). - Philippe Deléham, Mar 26 2013
a(n) = A000217(4*n) - A000217(3*n). - Bruno Berselli, Oct 13 2016
G.f.: x*(4 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, Oct 13 2016
E.g.f.: (x/2)*(7*x + 8)*exp(x). - G. C. Greubel, Aug 23 2017
a(n) = A000217(n) + 3*A000290(n). - Leo Tavares, Mar 15 2025

A118729 Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006

Keywords

Comments

The numbers in row r span the interval ]8*A000217(r-1), 8*A000217(r)].
The first difference between the entries in row r is r.
Partial sums of floor(n/8). - Philippe Deléham, Mar 26 2013
Apart from the initial zeros, the same as A008726. - Philippe Deléham, Mar 28 2013
a(n+7) is the number of key presses required to type a word of n letters, all different, on a keypad with 8 keys where 1 press of a key is some letter, 2 presses is some other letter, etc., and under an optimal mapping of letters to keys and presses (answering LeetCode problem 3014). - Christopher J. Thomas, Feb 16 2024

Examples

			The array starts, with row r=0, as
  r=0:   0  0  0  0  0  0  0  0;
  r=1:   1  2  3  4  5  6  7  8;
  r=2:  10 12 14 16 18 20 22 24;
  r=3:  27 30 33 36 39 42 45 48;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)

Formula

From Philippe Deléham, Mar 26 2013: (Start)
a(8k) = A001107(k).
a(8k+1) = A002939(k).
a(8k+2) = A033991(k).
a(8k+3) = A016742(k).
a(8k+4) = A007742(k).
a(8k+5) = A002943(k).
a(8k+6) = A033954(k).
a(8k+7) = A033996(k). (End)
G.f.: x^8/((1-x)^2*(1-x^8)). - Philippe Deléham, Mar 28 2013
a(n) = floor(n/8)*(n-3-4*floor(n/8)). - Ridouane Oudra, Jun 04 2019
a(n+7) = (1/2)*(n+(n mod 8))*(floor(n/8)+1). - Christopher J. Thomas, Feb 13 2024

Extensions

Redefined as a rectangular tabf array and description simplified by R. J. Mathar, Oct 20 2010

A218471 a(n) = n*(7*n-3)/2.

Original entry on oeis.org

0, 2, 11, 27, 50, 80, 117, 161, 212, 270, 335, 407, 486, 572, 665, 765, 872, 986, 1107, 1235, 1370, 1512, 1661, 1817, 1980, 2150, 2327, 2511, 2702, 2900, 3105, 3317, 3536, 3762, 3995, 4235, 4482, 4736, 4997, 5265, 5540, 5822, 6111, 6407, 6710, 7020, 7337
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2013

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=7). - Bruno Berselli, Jun 10 2013

Programs

Formula

G.f.: x*(2+5*x)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) with a(0)=0, a(1)=2, a(2)=11.
a(n) = A001106(n) + n.
a(n) = A022264(n) - n.
a(n) = A022265(n) - 2*n.
a(n) = A186029(n) - 3*n.
a(n) = A179986(n) - 4*n.
a(n) = A024966(n) - 5*n.
a(n) = A174738(7*n+1).
E.g.f.: (x/2)*(7*x + 4)*exp(x). - G. C. Greubel, Aug 23 2017
Showing 1-10 of 16 results. Next